
A Linux Software RAID Tutorial
March 10, 2006

Dustin C. Kirkland
Copyright (C) International Business Machines Corp., 2006

Table of Contents
An Overview of RAID ..1

What is a RAID?..1
Hardware RAID vs. software RAID?..1
How does software RAID work in Linux?..1
What are the differences between the various RAID levels?..2

RAID0 (striping)...2
RAID1 (mirroring)..2
RAID2 (bit striping)..2
RAID3 (byte striping)...2
RAID4 (block striping)...3
RAID5 (block striping with striped parity)...3
Other RAID Levels...3

Installing Linux onto a software RAID...4
The RHEL/Fedora graphical process...5
The SLES/openSUSE graphical process...12

Creating a Software RAID on an Existing Linux System...19
Userspace utilities..19

raidtools...19
mdadm...19

RAID creation on the command line...19

Losing a RAID Component..23
Physically removed disk..23
Corrupted or damaged disk..23
Simulating the loss...23

Recovering and Restoring a RAID..25
RAID recovery on the command line..25

Appendices...29

Appendix A..30
A network installable tree..30

Appendix B..31
Minimally configured NFS server...31

Appendix C..32
Minimally configured DHCP server..32

Appendix D..33
Minimally configured DNS server...33

Appendix E..34
Simple peer−to−peer TCP/IP Linux networking...34

A Linux Software RAID Tutorial

i

Table of Contents
Appendix F..35

Installation initiation from USB media..35
RHEL/Fedora..35
SLES/openSUSE...35

References..38

About the Author..39

Legal Statement...40

A Linux Software RAID Tutorial

ii

An Overview of RAID

What is a RAID?

The term RAID is an acronym for the phrase, Redundant Array of Independent Disks. RAID is a way of
combining the storage available across multiple disks and supplying users a single, unified virtual device.
RAID can be used to provide:

data integrity•
fault tolerance•
improved performance•
greater storage capacity•

Hard disks are mechanical devices involving moving parts and unfortunately tend to fail over time. There are
also physical limits to the speed at which data can be read and/or written to disks. RAID helps mitigate this
risk by protecting data stored on hard disks and improving disk performance by writing the data to multiple
physical locations according to several different schemas, known as "RAID Levels". Furthermore, RAID can
be provided by either dedicated, specialized hardware or by the operating system at a virtual layer.

Hardware RAID vs. software RAID?

Hardware RAID solutions exist that operate as dedicated devices, usually as PCI expansion cards or directly
on the motherboard. The independent disks attach to the hardware interface. In a true hardware RAID, the
operating system simply writes data to the hardware RAID controller which handles the multiplicitous reads
and writes to the associated disks. Other so−called hardware RAIDs rely on special drivers to the operating
system; these act more like software RAIDs in practice. With current technology, hardware RAID
configurations are generally chosen for very large RAIDs.

Additionally, some operating systems, including Linux®, provide RAID functionality within a software layer.
RAID partitions are logically combined and a virtual device appears to higher layers of the operating system
in place of the multiple constituent devices. This solution is often a high−performance and inexpensive
alternative available for RAID users.

How does software RAID work in Linux?

Support for software RAID is provided natively within the Linux kernel. A RAID device consists of multiple
disk partition block devices grouped together and associated with a RAID level. The kernel creates a virtual
block device representing the entire RAID. Thereafter, reads and writes are performed on the RAID virtual
block device based on the particular algorithm of the chosen RAID level.

In addition to the code in kernel space that implements reading data from and writing data to the software
RAID, a user space component also exists in Linux environments that provides management access to the
RAID. Using the mdadm suite, Linux users can create, query, deconstruct, synchronize, and otherwise
maintain software RAID devices.

An Overview of RAID 1

What are the differences between the various RAID levels?

RAID0 (striping)

RAID0 implements striping, which is a way of distributing reads and writes across multiple disks for
improved disk performance. Striping reduces the overall load placed on each component disk in that
different segments of data can be simultaneously read or written to multiple disks at once. The total
amount of storage available is the sum of all component disks. Disks of different sizes may be used,
but the size of the smallest disk will limit the amount of space usable on all of the disks. Data
protection and fault tolerance is not provided by RAID0, as none of the data is duplicated. A failure in
any one of the disks will render the RAID unusable and data will have been lost. However, RAID0
arrays are sometimes used for read−only fileserving of already−protected data.

Linux users wishing to concatenate multiple disks into a single, larger virtual device should consider
Logical Volume Management (LVM). LVM supports striping and allows dynamically growing or
shrinking logical volumes and concatenation of disks of different sizes. LVM is not covered further in
this tutorial. [5]

RAID1 (mirroring)

RAID1 is an implementation where all written data is duplicated (or mirrored) to each constituent
disk, thus providing data protection and fault tolerance. RAID1 can also provide improved
performance, as the RAID controllers have multiple disks from which to read when one or more are
busy. The total storage available to a RAID1 user, however, is equal to the smallest disk in the set,
and thus RAID1 does not provide a greater storage capacity.

An optimal RAID1 configuration will usually have two identically sized disks. A failure of one of the
disks will not result in data lost since all of the data exists on both disks, and the RAID will continue
to operate (though in a state unprotected against a failure of the remaining disk). The faulty disk can
be replaced, the data synchronized to the new disk, and the RAID1 protection restored.

RAID2 (bit striping)

RAID2 stripes data at the bit level across disks and uses a Hamming code for parity. However, the
performance of bit striping is abysmal and RAID2 is not practically used.

RAID3 (byte striping)

RAID3 stripes data at the byte level and dedicates an entire disk for parity. Like RAID2, RAID3 is
not practically used for performance reasons. As most any read requires more than one byte of data,
reads involve operations on every disk in the set. Such disk access will easily thrash a system.
Additionally, loss of the parity disk yields a system vulnerable to corrupted data.

A Linux Software RAID Tutorial

What are the differences between the various RAID levels? 2

RAID4 (block striping)

RAID4 stripes data at the block−level and dedicates an entire disk for parity. RAID4 is similar to both
RAID2 and RAID3 but significantly improves performance as any read request contained within a
single block can be serviced from a single disk. RAID4 is used on a limited basis due to the storage
penalty and data corruption vulnerability of dedicating an entire disk to parity.

RAID5 (block striping with striped parity)

RAID5 implements block level striping like RAID4, but instead stripes the parity information across
all disks as well. In this way, the total storage capacity is maximized and parity information is
distributed across all disks. RAID5 also supports hot spares, which are disks that are members of the
RAID but not in active use. The hot spares are activated and added to the RAID upon the detection of
a failed disk. RAID5 is the most commonly used level as it provides the best combination of benefits
and acceptable costs.

Other RAID Levels

Other RAID levels exist, such as RAID6, RAID1+0, Nested RAID, and various proprietary RAID
implementations. For the practical purposes of this tutorial, detailed treatment is only given to RAID1
and RAID5. [13]

A Linux Software RAID Tutorial

RAID4 (block striping) 3

Installing Linux onto a software RAID
RHEL/Fedora and SLES/openSUSE support RAID creation at the time of installation. This is a great way to
ensure RAID protection of your data from the beginning. The graphical processes are mostly intuitive, but
both involve their own nuances. Screen shots of each with instructional explanations of every step of the
processes are found below.

Note: These screen shots actually demonstrate Linux software RAID entirely on a single disk (/dev/hda).
This does not actually offer RAID's redundancy protection as all of the data is on the same disk! However, the
Linux kernel treats the array in the same way, and thus we can sufficiently use this virtualization for the
purposes of this demonstration. In a real scenario, you should create partitions on each of a set of disks (for
example, /dev/hda, /dev/hdb, /dev/hdc).

Note: Taken literally, the instructions below perform a completely destructive installation. In other words, you
should NOT perform these examples on any systems having valuable data, as all data will be lost during
the partitioning and formatting steps.

A few key points about software RAID to keep in mind regardless of your choice of distribution:

RAID0 (striping) does not provide redundant data protection and is not demonstrated by this tutorial.•
RAID1 (mirroring) requires at least two partitions, and your total space available will equal that of the
smallest partition. If you are creating more than two partitions, RAID1 is probably not your best
option; you should consider RAID5 instead to more efficiently use your available storage.

•

RAID5 (redundant striping) requires at least 3 partitions and supports any number of hot spare
partitions.

•

Optimal chunk size (block size) will vary. This tutorial will not cover this in detail.•
A persistent superblock is important RAID configuration data that is written to the beginning of every
disk and allows the kernel to initialize the array when the configuration files are actually stored in the
array.

•

Also, these instructions show a basic partitioning setup, with a 100 MB /boot partition, a 1 GB swap
partition, and either:

a pair of 2 GB software RAID partitions combined into a RAID1 mounted at /•
or three 2 GB software RAID partitions combined into a RAID5 mounted at /•

The reasoning for these choices:

It is probably a good idea to create a separate boot partition, as some bootloaders are not capable of
reading RAID partitions at boot time. That is, software RAID is provided by the Linux kernel, which
is not yet running when the bootloader executes.

•

Swap space is a special disk partition the kernel uses when caching information from RAM to hard
disk to improve performance. Optimally, swap space should be twice the size of your RAM. Swap
space should not exist on a RAID, as the Linux kernel optimizes swap reads and writes according to
its own algorithm.

•

A size of 2 GB per software RAID partition was chosen in this tutorial in the interest of a speedy
demonstration. 2 GB is large enough for a basic Linux installation and does not require very long to
format and initially synchronize. Your partitions may well be significantly larger.

•

If you select / (the root directory) as your mount point for the RAID, you will install all of Linux
onto the RAID. Alternatively, you might instead choose a different mount point, such as /data.

•

Installing Linux onto a software RAID 4

The RHEL/Fedora graphical process

When prompted, select Manually partition with Disk Druid.1.

Delete all partitions and start with clean disk(s).2.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 5

Create a 100 MB /boot partition formatted ext3.3.

Create a 1024 MB swap partition.4.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 6

Create as many individual RAID partitions as required. In this example, create two software RAID
partitions for the RAID1 example, or three software RAID partitions for the RAID5 example.

5.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 7

Choose the properties of the partition.
Make sure the File System Type selected is software RAID.♦
Choose the physical drive on which the partition will be created.♦
Define the size of the partition.♦
You do not need to select the Force to be a primary partition box.♦

6.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 8

You should see:
An ext3 /boot.♦
At least two software RAID partitions.♦
A swap partition.♦

7.

You have created at least two software RAID partitions, and now you can assimilate those into a
RAID. Instead of creating another partition, Create a RAID device.

8.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 9

This RAID device will appear as any other filesystem device. Here, you choose the RAID's
properties.

Choose the mount point. (/ if you want to install to RAID)♦
Choose the file system type. (usually ext3 on RHEL/Fedora)♦
Choose the name of the RAID device. (usually increments from /dev/md0)♦
Choose your RAID level. Consult the documentation above.♦
Choose each of the partitions you want to add to the RAID.♦
You may also indicate spares (if you have enough RAID partitions).♦

... or ...

9.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 10

You should now see a new device, /dev/md0, in your partition table. Repeating the process above,
you can create any number of RAID devices.

10.

You may now proceed through the rest of the normal RHEL/Fedora installation process.

A Linux Software RAID Tutorial

The RHEL/Fedora graphical process 11

The SLES/openSUSE graphical process

Click on Partitioning to customize the partition setup.1.

Select Create Custom Partition Setup.2.

Again, choose Custom Partitioning (for experts). Note: In most real RAID configurations, you should
probably see at least two hard disks in this list.

3.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 12

Delete all partitions and start with clean disk(s).4.

The first few partitions you create will be Primary Partitions.5.

Create a 100 MB /boot partition formatted Reiser.6.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 13

Create a 1024 MB swap partition.7.

You can only have four primary partitions on a hard drive. Although the RHEL/Fedora installer will
automatically create extended partitions as needed, in openSUSE this must be done manually. When
creating either your third or fourth partition, choose Extended.

8.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 14

Give all of the remaining space on the hard drive to this extended partition. You will carve the rest of
your partitions out of this space as additional extended partitions.

9.

Create as many individual RAID partitions as required. Remember the requirements of each of the
different RAID levels discussed above.

Select Do not format.♦
Set the File system ID to 0xFD Linux RAID.♦
Choose the physical drive on which the partition will be created.♦
Define the size of the partition.♦

10.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 15

You should see:
A Reiser/boot partition.♦
A swap partition.♦
At least two software RAID partitions.♦

11.

To create the RAID using the RAID partitions, use the RAID−>Create RAID button.12.

Select the type of RAID you want to create.13.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 16

Choose each of the partitions of type RAID and click "Add" to construct the RAID.14.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 17

This RAID device will appear as any other filesystem device. Here, you choose the RAID's
properties.

Choose how the filesystem should be formatted. The default filesystem in SUSE is usually
Reiser.

♦

Choose the mount point.♦

15.

You should now see a new device, /dev/md0, in your partition table. Using the process above, you
can create any number of RAID devices.

16.

You may now proceed through the rest of the normal SLES/openSUSE installation process.

A Linux Software RAID Tutorial

The SLES/openSUSE graphical process 18

Creating a Software RAID on an Existing Linux
System
Although some users are equipped to create a software RAID at the time of installation, it is also both possible
and practical to construct a software RAID on a running Linux system. This usually happens when a user adds
new storage to an existing system. Sometimes this is possible using hot swappable hard drives (which means
that the hard drive(s) can be added without powering the system down). Other times, the system must be
powered down and the drive(s) physically installed. Either way, as soon as the Linux kernel is able to see the
hard disk device(s), you can partition and create the RAID.

Userspace utilities

raidtools

Legacy Linux systems use a suite of utilities collectively known as raidtools to manage software RAIDs.
This tutorial does not cover raidtools as both RHEL/Fedora and SLES/openSUSE distributions use the
mdadm suite in the latest releases. You will need to seek additional documentation on raidtools if you
wish to manage software RAIDs using this suite.

mdadm

Current Linux distributions contain the mdadm package to handle the management of software RAIDs in user
space. The mdadm manpage [6] contains a far more complete discussion of all of its features. The uses of
mdadm demonstrated below represent a handy subset and are enough to demonstrate some basic
administration of software RAIDs.

RAID creation on the command line

The following example creates a software RAID1 out of two USB flash cards, located at /dev/sda and
/dev/sdd.

You can either use fdisk to manually delete each partition, or you can simply zero out the partition table.
n.b, This will destroy all data on these devices!

dd if=/dev/zero of=/dev/sda bs=1024 count=1024
1024+0 records in
1024+0 records out
dd if=/dev/zero of=/dev/sdd bs=1024 count=1024
1024+0 records in
1024+0 records out

Creating a Software RAID on an Existing Linux System 19

Display all partitioning information for each of the drives before you begin.
fdisk −l /dev/sda /dev/sdd

Disk /dev/sda: 131 MB, 131072000 bytes
5 heads, 50 sectors/track, 1024 cylinders
Units = cylinders of 250 * 512 = 128000 bytes

Disk /dev/sda doesn't contain a valid partition table

Disk /dev/sdd: 131 MB, 131072000 bytes
5 heads, 50 sectors/track, 1024 cylinders
Units = cylinders of 250 * 512 = 128000 bytes

Disk /dev/sdd doesn't contain a valid partition table

Create the software RAID partition on each of the disks. Use the same process for each of the media.
fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): n
Command action
 e extended
 p primary partition (1−4)
p
Partition number (1−4): 1
First cylinder (1−1024, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1−1024, default 1024):
Using default value 1024

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): fd
Changed system type of partition 1 to fd (Linux raid autodetect)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re−read partition table.

A Linux Software RAID Tutorial

Creating a Software RAID on an Existing Linux System 20

Now, the partition tables of each media should each have a Linux RAID partition:
fdisk −l /dev/sda /dev/sdd

Disk /dev/sda: 131 MB, 131072000 bytes
5 heads, 50 sectors/track, 1024 cylinders
Units = cylinders of 250 * 512 = 128000 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 1 1024 127975 fd Linux raid autodetect

Disk /dev/sdd: 131 MB, 131072000 bytes
5 heads, 50 sectors/track, 1024 cylinders
Units = cylinders of 250 * 512 = 128000 bytes

 Device Boot Start End Blocks Id System
/dev/sdd1 1 1024 127975 fd Linux raid autodetect

You may need to reboot for the kernel to re−read the updated partition tables. In this case, the Linux kernel
does not require a reboot to re−read the partition tables of the USB media.

Add the disks to a new RAID device. Note: If you already have RAID(s) on your system, you should
increment /dev/md0 to the next available block device. This is also the point at which you define the RAID
level and the number of devices in the array.

mdadm −−create /dev/md0 −−level=1 −−raid−devices=2 /dev/sda1 /dev/sdd1
mdadm: array /dev/md0 started.

Format the RAID with the filesystem of your choice.
mkfs.ext3 /dev/md0
mke2fs 1.35 (28−Feb−2004)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
32000 inodes, 127872 blocks
6393 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=67371008
16 block groups
8192 blocks per group, 8192 fragments per group
2000 inodes per group
Superblock backups stored on blocks:
 8193, 24577, 40961, 57345, 73729

Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 25 mounts or
180 days, whichever comes first. Use tune2fs −c or −i to override.

A Linux Software RAID Tutorial

Creating a Software RAID on an Existing Linux System 21

Mount the RAID device and check to see that the mount worked.
mount /dev/md0 /mnt/
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
none on /sys type sysfs (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
usbfs on /proc/bus/usb type usbfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/md0 on /mnt type ext3 (rw)

Test reading from, and writing data to the mounted RAID filesystem.
echo "Howdy, RAID :)" > /mnt/test.txt
cat /mnt/test.txt
Howdy, RAID :)

Update /etc/mdadm.conf so that your RAID is started automatically with the rest of your filesystems at
boot time.
echo "DEVICE /dev/sda1 /dev/sdd1" > /etc/mdadm.conf
mdadm −−detail −−scan | tee −a /etc/mdadm.conf
ARRAY /dev/md0 level=raid1 num−devices=2 UUID=b49c7f86:3898f1c0:e5478f50:aa589542
 devices=/dev/sda1,/dev/sdd1

Optional: If RAID1, you can verify that the data is in fact being mirrored. Stop and unmount the RAID, and
mount (read−only) each of the component partitions and see that the same data is in place.
mdadm −−stop /dev/md0
mount −o ro /dev/sda1 /mnt
ls /mnt/
lost+found test.txt
cat /mnt/test.txt
Howdy, RAID :)
umount /mnt/
mount −o ro /dev/sdd1 /mnt
ls /mnt/
lost+found test.txt
cat /mnt/test.txt
Howdy, RAID :)
umount /mnt

To restart and remount the RAID:
mdadm −−assemble /dev/md0
mount /dev/md0 /mnt

A Linux Software RAID Tutorial

Creating a Software RAID on an Existing Linux System 22

Losing a RAID Component
Although software RAIDs have performance advantages, most users create RAIDs for redundant protection of
critical data. This chapter demonstrates how to simulate the loss or destruction of a disk to test the data
protection aspect of your RAID. In the following section, you will learn how to restore data from the mirrored
disk or parity information.

Physically removed disk

It is quite easy to simulate a damaged disk on systems where the hard drive is easily removable: simply
remove or disconnect the disk. The above example with the USB media was designed with this feature in
mind−−it is very easy to simply remove one of the cards to simulate a faulty disk.

Corrupted or damaged disk

Other examples of this tutorial involve creating software RAIDs using multiple partitions on the same disk. In
this case, it is not possible to physically remove the disk to test the operation of the RAID. Instead, you can
overwrite one of the RAID partitions with zeros (or random data) to simulate a disk crash, and then reformat
that partition and restore the RAID onto it.

Simulating the loss

Before simulating a damaged disk, check the status of the RAID:

cat /proc/mdstat
Personalities : [raid1]
md0 : active raid1 sda1[0] sdd1[1]
 127872 blocks [2/2] [UU]
mdadm −−detail /dev/md0
/dev/md0:
 Version : 00.90.01
 Creation Time : Mon Feb 13 21:09:43 2006
 Raid Level : raid1
 Array Size : 127872 (124.88 MiB 130.94 MB)
 Device Size : 127872 (124.88 MiB 130.94 MB)
 Raid Devices : 2
 Total Devices : 2
Preferred Minor : 0
 Persistence : Superblock is persistent

 Update Time : Mon Feb 13 21:40:29 2006
 State : clean
 Active Devices : 2
Working Devices : 2
 Failed Devices : 0
 Spare Devices : 0

 Number Major Minor RaidDevice State
 0 8 1 0 active sync /dev/sda1
 1 8 49 1 active sync /dev/sdd1
 UUID : b49c7f86:3898f1c0:e5478f50:aa589542
 Events : 0.34

Losing a RAID Component 23

Remove one of the USB media.

Alternatively, you could use dd to overwrite one of the RAID partitions with /dev/zero or
/dev/random. Note: dd should always be used with caution.

Check that you can continue to read/write to/from the RAID.

echo "new data" >> /mnt/test.txt
cat /mnt/test.txt
Howdy, RAID :)
new data

Now check your RAID status. Notice that one of the devices has been marked "faulty" and the removal is
detected. Your RAID will continue operating, though in an unprotected manner, until the faulty media is
replaced.
mdadm −−detail /dev/md0
/dev/md0:
 Version : 00.90.01
 Creation Time : Mon Feb 13 21:09:43 2006
 Raid Level : raid1
 Array Size : 127872 (124.88 MiB 130.94 MB)
 Device Size : 127872 (124.88 MiB 130.94 MB)
 Raid Devices : 2
 Total Devices : 2
Preferred Minor : 0
 Persistence : Superblock is persistent

 Update Time : Mon Feb 13 21:44:14 2006
 State : clean, degraded
 Active Devices : 1
Working Devices : 1
 Failed Devices : 1
 Spare Devices : 0

 Number Major Minor RaidDevice State
 0 8 1 0 active sync /dev/sda1
 1 0 0 −1 removed
 2 8 49 −1 faulty /dev/sdd1
 UUID : b49c7f86:3898f1c0:e5478f50:aa589542
 Events : 0.41
cat /proc/mdstat
Personalities : [raid1]
md0 : active raid1 sda1[0] sdd1[2](F)
 127872 blocks [2/1] [U_]

A Linux Software RAID Tutorial

Losing a RAID Component 24

Recovering and Restoring a RAID
Hopefully, you will never need to execute the instructions in this section. However, most any computer user
has experienced a hard disk failure. If you go through the trouble to create a software RAID, it is only prudent
to understand how to recover your data and restore your RAID after an unfortunate disk failure. The previous
section demonstrated a couple of ways to simulate a damaged or lost disk. This section assumes that one of
the disks in a RAID has been destroyed in some way.

RAID recovery on the command line

This example assumes that you have created a RAID1 of two USB media (/dev/sda and /dev/sdd) and
removed one of them (/dev/sdd) to simulate the loss of a disk (as discussed in the previous two sections).

Insert the new media (which might be the same media you previously removed). Delete the partition table and
repartition the media as previously instructed above to simulate a completely new and fresh replacement
media.

dd if=/dev/zero of=/dev/sdd bs=1024 count=1024
1024+0 records in
1024+0 records out
fdisk /dev/sdd
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): n
Command action
 e extended
 p primary partition (1−4)
p
Partition number (1−4): 1
First cylinder (1−1024, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1−1024, default 1024):
Using default value 1024

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): fd
Changed system type of partition 1 to fd (Linux raid autodetect)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re−read partition table.

To re−establish the RAID, first unmount and stop the RAID.
umount /mnt
mdadm −−stop /dev/md0

Recovering and Restoring a RAID 25

Next, restart the RAID. It will be started with one out of two devices.
mdadm −−assemble /dev/md0
mdadm: /dev/md0 has been started with 1 drive (out of 2).
mdadm −−detail /dev/md0
/dev/md0:
 Version : 00.90.03
 Creation Time : Wed Feb 15 15:17:39 2006
 Raid Level : raid1
 Array Size : 127872 (124.88 MiB 130.94 MB)
 Device Size : 127872 (124.88 MiB 130.94 MB)
 Raid Devices : 2
 Total Devices : 1
Preferred Minor : 0
 Persistence : Superblock is persistent

 Update Time : Wed Feb 15 15:29:35 2006
 State : clean, degraded
 Active Devices : 1
Working Devices : 1
 Failed Devices : 0
 Spare Devices : 0

 UUID : d3b24ecb:48835afd:655f74bc:1d6ada33
 Events : 0.35

 Number Major Minor RaidDevice State
 0 8 33 0 active sync /dev/sdc1
 1 0 0 − removed

A Linux Software RAID Tutorial

Recovering and Restoring a RAID 26

Now add the new replacement partition to the RAID. It will be resynchronized to the original partition.
mdadm −−add /dev/md0 /dev/sdd1
mdadm: hot added /dev/sdd1
mdadm −−detail /dev/md0
/dev/md0:
 Version : 00.90.03
 Creation Time : Wed Feb 15 15:17:39 2006
 Raid Level : raid1
 Array Size : 127872 (124.88 MiB 130.94 MB)
 Device Size : 127872 (124.88 MiB 130.94 MB)
 Raid Devices : 2
 Total Devices : 2
Preferred Minor : 0
 Persistence : Superblock is persistent

 Update Time : Wed Feb 15 15:31:39 2006
 State : clean, degraded, recovering
 Active Devices : 1
Working Devices : 2
 Failed Devices : 0
 Spare Devices : 1

 Rebuild Status : 31% complete

 UUID : d3b24ecb:48835afd:655f74bc:1d6ada33
 Events : 0.36

 Number Major Minor RaidDevice State
 0 8 33 0 active sync /dev/sdc1
 1 0 0 − removed

 2 8 49 1 spare rebuilding /dev/sdd1
cat /proc/mdstat
Personalities : [raid1]
md0 : active raid1 sdd1[2] sdc1[0]
 127872 blocks [2/1] [U_]
 [======>..............] recovery = 34.4% (44608/127872) finish=2.9min speed=461K/sec

unused devices:

A Linux Software RAID Tutorial

Recovering and Restoring a RAID 27

Depending on filesystem size and bus speed, the synchronization could take some time. When the resync
completes, your RAID is fully restored.
mdadm −−detail /dev/md0
/dev/md0:
 Version : 00.90.03
 Creation Time : Wed Feb 15 15:17:39 2006
 Raid Level : raid1
 Array Size : 127872 (124.88 MiB 130.94 MB)
 Device Size : 127872 (124.88 MiB 130.94 MB)
 Raid Devices : 2
 Total Devices : 2
Preferred Minor : 0
 Persistence : Superblock is persistent

 Update Time : Wed Feb 15 15:36:25 2006
 State : clean
 Active Devices : 2
Working Devices : 2
 Failed Devices : 0
 Spare Devices : 0

 UUID : d3b24ecb:48835afd:655f74bc:1d6ada33
 Events : 0.37

 Number Major Minor RaidDevice State
 0 8 33 0 active sync /dev/sdc1
 1 8 49 1 active sync /dev/sdd1

A Linux Software RAID Tutorial

Recovering and Restoring a RAID 28

Appendices
The following appendices are not directly related to Linux software RAID. However, your instructor uses
several utilities and services that helps ensure that the demonstrations operate efficiently and smoothly;
primarily optimizing the RAID installations to perform rapid network installs. In the spirit and vein of open
source solution development, these practices are briefly described and interested readers are directed to
references with more complete discussions [1,2,7,8].

Appendices 29

Appendix A

A network installable tree

Depending on your network bandwith, it can be considerably faster to install Linux over a network than using
multiple CDROMs. The installation proceeds seamlessly without requiring the user to switch between
multiple install media. Furthermore, 10/100Mbps ethernet is faster than almost any CDROM bus transfer rate.

Red Hat® and SUSE install trees are created identically, by copying the contents of all install media into a
single directory. Note that it helps to copy the disk contents in reverse order, such that a couple of key files
with the same name are finally written with the contents from disk one.

Create a directory for the installable tree:

mkdir −p /install/Fedora

If you have physical copies of the media, mount each of the disks in this way:
mount /dev/cdrom /media/cdrom

If you have downloaded ISO images, you can mount each of the disks in this way:
mount −o loop /tmp/Fedora−disc4.iso /media/cdrom

Copy the contents of each disk (starting with the last disk moving to the first) using rsync, and then unmount:
rsync −av /media/cdrom/ /install/Fedora/
umount /media/cdrom

You now have a network installable tree.

Appendix A 30

Appendix B

Minimally configured NFS server

The client you want to install must be able to access the installable tree you created. Red Hat and SUSE
support installations over HTTP, FTP, and NFS. Any of these could be easily configured, though NFS is used
for these demonstrations.

You need to add the directory containing the install trees to /etc/exports and restart the portmap and
nfs daemons:

echo "/install *(ro)" > /etc/exports
/etc/init.d/portmap restart
/etc/init.d/nfs restart
/etc/init.d/iptables stop

Note: These instructions also turn off your firewall by stopping iptables. Generally, this is not a safe NFS
configuration. However, these demonstrations are taking place on a two−computer network, and NFS requires
some rather complicated firewall modifications due to the number of ports it uses. There are other references
available that describe more secure NFS administration.

Your installable tree is now exported over NFS to any machine on your network.

Appendix B 31

Appendix C

Minimally configured DHCP server

The installation target machine in these demonstrations uses DHCP to dynamically configure its network
connection. To accommodate the client, the server must have dhcpd configured and running.

Configure dhcpd in /etc/dhcpd.conf:

cat /etc/dhcpd.conf
subnet 192.168.0.0 netmask 255.255.255.0 {
 range 192.168.0.100 192.168.0.200;
 option domain−name−servers 192.168.0.1;
 option domain−name "local";
 host raidtest {
 hardware ethernet 00:0a:63:a0:98:13;
 fixed−address 192.168.0.200;
 }

}
ddns−update−style ad−hoc;

This very basic DHCP server configuration specifies that:

The range of IP addresses from 192.168.0.100 − 192.168.0.200 will be assigned by the
server to requesting clients.

•

The server will also tell requesting clients that the DNS server for this network is 192.168.0.1
(which also happens to be the address of the DHCP and NFS server).

•

And furthermore, if the machine with hardware MAC address of 00:0a:63:a0:98:13 requests an IP,
always give it 192.168.0.200.

•

Once the configuration file is updated, you can start the DHCP server with:

/etc/init.d/dhcpd start

You now have a DHCP server running and clients attached to the same network as this server can connect
and dynamically receive their network configurations.

Appendix C 32

Appendix D

Minimally configured DNS server

DNS is a surprisingly complicated service to configure. The reasons for running in these demonstrations are
rather inane, as no domain name resolution in these installation processes is actually required, except for the
reverse name lookup of the client. However, both distribution installation processes take an exceedingly long
time searching for valid domain name servers before timing out. Thus, your instructor is running a bare bones,
crippled DNS server simply to speed along these network installations.

These instructions will create both forward and reverse name resolution records for a host named "raidtest"
with IP address 192.168.0.200.

Configure forward name resolution by adding the following zone to /etc/named.conf:

zone "0.168.192.in−addr.arpa" IN {
 type master;
 file "named.raidtest";
 allow−update { none; };
};

Configure reverse name resolution by creating the file /var/named/named.raidtest:
$TTL 86400
@ IN SOA localhost. root.localhost. (
 1997022700 ; Serial
 28800 ; Refresh
 14400 ; Retry
 3600000 ; Expire
 86400) ; Minimum
 IN NS localhost.
1 IN PTR localhost.
200 IN PTR raidtest.

Start DNS:
/etc/init.d/named start

You are now running just enough of a DNS server to keep these Linux network installations from hanging
while looking for a valid DNS server.

Appendix D 33

Appendix E

Simple peer−to−peer TCP/IP Linux networking

These demonstrations involve connecting two computers: one client being installed, and one server running
NFS, DNS, and DHCP. These simple instructions show how to establish a peer−to−peer TCP/IP network
connection using Linux.

Connect the machines using either a crossover networking cable, or a hub/switch.

On the server machine, configure its ethernet interface to use a static IP address:

ifdown eth0
ifconfig eth0 192.168.0.1

The client machine's installation process will be able to automatically obtain a DHCP address from the server.
ifconfig eth0
dhclient eth0

Alternatively, if you wanted to connect the client machine to the server using a static IP, set the address and
gateway as follows:
ifconfig eth0 192.168.0.100
route add default gw 192.168.0.1

You now have a TCP/IP connection established between these two computers.

Appendix E 34

Appendix F

Installation initiation from USB media

Your instructor performs the demo installations on an IBM Thinkpad whose CDROM drive has been replaced
by a second hard drive, thus booting from an installable CDROM image is impossible. Instead, he uses USB
media which are able to boot the machine and begin the installation.

Note: Your system must be able to boot from USB media (most late models can) and this feature must be
enabled in your BIOS.

RHEL/Fedora

RHEL and Fedora ship with just such a bootable image. Look for a file called images/diskboot.img on
the first disk of an installation set.

Note: Be careful with the disk dump (dd) utility. It overwrites data on the destination (of=...) without
confirming. This is a dangerously easy way to fry a disk if your destination is incorrect!

Use dd to write this image to the media from which you want to install:

mount /dev/cdrom /media/cdrom
dd if=/media/cdrom/images/diskboot.img of=/dev/sda
umount /media/cdrom

Insert the USB device and boot the system to be installed. At the grub boot prompt, enter:
linux askmethod

Navigate the installation prompts until you are asked for the location of the install media.•
Choose "NFS".•
Have your network automatically detected by selecting Use dynamic IP configuration
(BOOTP/DHCP).

•

Enter the NFS server as 192.168.0.1.•
Enter the mount point, /install/RHEL or wherever you may have put it.•

SLES/openSUSE

SLES9 ships with images for three floppy disks, from which one can boot and begin a network installation.
Loading 4.5 MB of data over a floppy bus, however, takes some time. It is far more efficient to boot from a
USB device, whose contents can be read much faster. Unfortunately, SLES9 does not ship with such an image
precompiled. Fortunately, though, openSUSE contains a utility mkbootimg that is able to create such images
and also is backward compatible with SLES9. The instructions below show how to use this utility to create
bootable USB media to install either SLES or openSUSE.

Appendix F 35

You will need to partition and format your USB media. Insert it and check dmesg to find its location. Note:
Partitioning and formatting will delete all data!

dmesg | tail
SCSI device sda: 256000 512−byte hdwr sectors (131 MB)
sda: Write Protect is off
sda: Mode Sense: 0b 00 00 08
sda: assuming drive cache: write through
 sda: sda1
sd 0:0:0:0: Attached scsi removable disk sda

Remove the existing partition table by overwriting it with a megabyte of zero's:
dd if=/dev/zero of=/dev/sda bs=1024 count=1024
1024+0 records in
1024+0 records out

Partition the disk with one 32−bit File Allocation Table (FAT32) partition of size 12 MB:
fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): n
Command action
 e extended
 p primary partition (1−4)
p
Partition number (1−4): 1
First cylinder (1−1024, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1−1024, default 1024): +12M

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): b
Changed system type of partition 1 to b (W95 FAT32)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re−read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.

Now format the partition as a FAT16 filesyste:
mkdosfs −F 16 /dev/sda1
mkdosfs 2.10 (22 Sep 2003)

A Linux Software RAID Tutorial

Appendix F 36

Next, you need to obtain the boot/mkbootdisk utility from a recent openSUSE first disk:
mount /dev/cdrom /media/cdrom
cp /media/cdrom/boot/mkbootdisk /tmp
umount /media/cdrom

Insert the first disk of the SUSE distribution you will be installing (SLES or openSUSE) and use
mkbootdisk to install the bootable image to your USB media:
mount /dev/cdrom /media/cdrom
/tmp/mkbootdisk −−32 −−partition /dev/sda /media/cdrom
umount /media/cdrom

Insert the USB device and boot the system to be installed. At the boot prompt, enter:
linux install=nfs://192.168.0.1/install/SUSE

You can now begin the installation.

A Linux Software RAID Tutorial

Appendix F 37

References
DHCP Howto
http://www.troubleshooters.com/linux/dhcp.htm

1.

DNS
http://www.aboutdebian.com/dns.htm

2.

Fedora
http://fedora.redhat.com

3.

IBM
http://www.ibm.com

4.

LVM Howto
http://www.tldp.org/HOWTO/LVM−HOWTO/

5.

mdadm Manpage
http://man−wiki.net/index.php/8:mdadm

6.

Network Linux Installations
http://www.tldp.org/HOWTO/Network−Install−HOWTO.html

7.

NFS Howto
http://www.faqs.org/docs/Linux−HOWTO/NFS−HOWTO.html

8.

Novell SUSE
http://www.novell.com/linux/suse/

9.

openSUSE
http://en.opensuse.org/

10.

Red Hat
http://www.redhat.com

11.

Software RAID Howto
http://www.tldp.org/HOWTO/Software−RAID−HOWTO.html

12.

Wikipedia: RAID
http://en.wikipedia.org/wiki/Redundant_array_of_independent_disks

13.

References 38

http://www.troubleshooters.com/linux/dhcp.htm
http://www.aboutdebian.com/dns.htm
http://fedora.redhat.com
http://www.ibm.com
http://www.tldp.org/HOWTO/LVM-HOWTO/
http://man-wiki.net/index.php/8:mdadm
http://www.tldp.org/HOWTO/Network-Install-HOWTO.html
http://www.faqs.org/docs/Linux-HOWTO/NFS-HOWTO.html
http://www.novell.com/linux/suse/
http://en.opensuse.org/
http://www.redhat.com/
http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html
http://en.wikipedia.org/wiki/Redundant_array_of_independent_disks

About the Author
Dustin Kirkland is a software architect and Master Inventor in IBM's Linux Technology Center in Austin,
Texas. He worked for the last few years as a security software developer, contributing to Common Criteria
EAL2, EAL3, and EAL4 certifications of RHEL and SLES, developing Audit kernel and userspace features,
extending SELinux capabilities into the Audit system, and working with static source code analysis tools to
identify and fix vulnerabilities in various open source projects.

Dustin spent most of 2005 onsite at Red Hat's Westford, MA campus as a resident IBM LTC developer
cooperating on several key feature adds and bug fixes for RHEL4u2 −−one of which was improved support
for software RAID installation on IBM's POWER5 platform. This involved modifications to both the
Anaconda installer and the Yaboot bootloader. It was at this time, while testing these features, that Dustin
became intimately familiar with creating, destroying, and restoring systems using software RAID and the
motivation for this tutorial surfaced.

About the Author 39

Legal Statement
This work represents the view of the author and does not necessarily represent the view of IBM.

IBM, IBM (logo), e−business (logo), pSeries, e (logo) server, and xSeries are trademarks or registered
trademarks of International Business Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Legal Statement 40

	Table of Contents
	An Overview of RAID
	What is a RAID?
	Hardware RAID vs. software RAID?
	How does software RAID work in Linux?
	What are the differences between the various RAID levels?
	RAID0 (striping)
	RAID1 (mirroring)
	RAID2 (bit striping)
	RAID3 (byte striping)
	RAID4 (block striping)
	RAID5 (block striping with striped parity)
	Other RAID Levels

	Installing Linux onto a software RAID
	The RHEL/Fedora graphical process
	The SLES/openSUSE graphical process

	Creating a Software RAID on an Existing Linux System
	Userspace utilities
	raidtools
	mdadm

	RAID creation on the command line

	Losing a RAID Component
	Physically removed disk
	Corrupted or damaged disk
	Simulating the loss

	Recovering and Restoring a RAID
	RAID recovery on the command line

	Appendices
	Appendix A
	A network installable tree

	Appendix B
	Minimally configured NFS server

	Appendix C
	Minimally configured DHCP server

	Appendix D
	Minimally configured DNS server

	Appendix E
	Simple peer-to-peer TCP/IP Linux networking

	Appendix F
	Installation initiation from USB media
	RHEL/Fedora
	SLES/openSUSE

	References
	About the Author
	Legal Statement

