
The Regina Rexx Interpreter – Rexx Utility
Functions

Patrick TJ McPhee (ptjm@interlog.com)

Version 1.2.4, 20 July 2004

CONTENTS i

Contents

1 Introduction 1
1.1 Installation . 1

1.1.1 Win32 . 1
1.1.2 Unix . 1
1.1.3 Notes on Compiling . 2

1.2 Reporting Bugs . 5
1.3 Using RxFuncAdd . 5
1.4 Licencing . 6

2 Housekeeping Routines 7
2.1 SysLoadFuncs . 7
2.2 SysDropFuncs . 7

3 File System Routines 7
3.1 List of File System Routines . 7
3.2 Example . 8
3.3 SysCopyObject . 8
3.4 SysCreateShadow . 9
3.5 SysFileDelete . 9
3.6 SysFileSearch . 9
3.7 SysFileSystemType . 9
3.8 SysFileTree . 10
3.9 SysMkDir . 11
3.10 SysMoveObject . 11
3.11 SysRmDir . 11
3.12 SysSearchPath . 11
3.13 SysTempFileName . 11
3.14 SysGetFileDateTime . 12
3.15 SysSetFileDateTime . 12

4 System Routines 12
4.1 List of System Routines . 12
4.2 SysIni . 13
4.3 SysBootDrive . 14
4.4 SysWinVer . 14
4.5 SysOS2Ver . 14
4.6 SysLinVer . 14
4.7 SysVersion . 14
4.8 SysUtilVersion . 15
4.9 SysDriveInfo . 15
4.10 SysDriveMap . 15
4.11 SysGetErrorText . 16
4.12 SysSetPriority . 16
4.13 SysQueryProcess . 16

ii CONTENTS

4.14 SysSleep . 17
4.15 SysSwitchSession . 17
4.16 SysSystemDirectory . 17
4.17 SysVolumeLabel . 17
4.18 SysWaitNamedPipe . 18

5 Macro-Space Manipulation Routines 18
5.1 List of Macro-Space Manipulation Routines 18
5.2 SysAddRexxMacro . 18
5.3 SysClearRexxMacroSpace . 19
5.4 SysDropRexxMacro . 19
5.5 SysLoadRexxMacroSpace . 19
5.6 SysQueryRexxMacro . 19
5.7 SysReorderRexxMacro . 20
5.8 SysSaveRexxMacroSpace . 20

6 Console I/O Routines 20
6.1 List of Console I/O Routines . 20
6.2 Example . 21
6.3 SysCls . 21
6.4 SysCurPos . 21
6.5 SysCurState . 21
6.6 SysGetKey . 22
6.7 SysTextScreenRead . 22
6.8 SysTextScreenSize . 22
6.9 RxMessageBox . 22

7 Stem Manipulation Routines 23
7.1 List of Stem Manipulation Routines 24
7.2 Example . 24
7.3 SysDumpVariables . 24
7.4 SysStemCopy . 25
7.5 SysStemDelete . 25
7.6 SysStemInsert . 25
7.7 SysStemSort . 25
7.8 RegStemDoOver . 26
7.9 RegStemRead . 26
7.10 RegStemWrite . 27
7.11 RegStemSearch . 27

8 Semaphore Routines 28
8.1 List of Semaphore Routines . 28
8.2 SysCloseEventSem . 29
8.3 SysCloseMutexSem . 29
8.4 SysCreateEventSem . 29
8.5 SysCreateMutexSem . 29

CONTENTS iii

8.6 SysOpenEventSem . 29
8.7 SysOpenMutexSem . 30
8.8 SysPostEventSem . 30
8.9 SysPulseEventSem . 30
8.10 SysReleaseMutexSem . 30
8.11 SysRequestMutexSem . 31
8.12 SysResetEventSem . 31
8.13 SysWaitEventSem . 31

9 Character Set Conversion 31
9.1 List of Character Set Conversion Functions 32
9.2 SysToUnicode . 32
9.3 SysFromUnicode . 33
9.4 SysWinEncryptFile . 33
9.5 SysWinDecryptFile . 34

Index 35

iv CONTENTS

1

1 Introduction

This paper describes an implementation of IBM’s Rexx Utility functions for Unix and
Windows/NT. The Rexx Utility functions extend the capabilities of Rexx programs in
useful ways, and it’s desirable to have compatible interfaces available for all implemen-
tations. This implementation is meant for the Regina interpreter, however it should also
work with other interpreters. An earlier version of the library was binary compatible
with Rexx/IMC on Solaris.

Although I have access to the rexxutil source code through the OS/2 developer’s kit,
this implementation contains new code, and is based on the documentation for IBM’s
implementation, rather than its internals. The routines here are generally compatible
with IBM’s, although some IBM functions or options are not implemented, and in some
cases, the regutil version provides minor enhancements. Please see the file status.txt in
the distribution for claims of completion.

The manual, and the source code, are divided along the lines of functionality,
the major groupings being housekeeping (regutil.c), file system (regfilesys.c), general
system (regini.c), macro-space manipulation (regmacrospace.c), stem manipulation
(regstem.c), console I/O (regscreen.c, regscreenux.c), semaphore handling (regsem.c,
regsemux.c), and character set conversion (regunicode.c).

1.1 Installation

The regutil package includes a pre-compiled binary for Win32 platforms and source
code which should compile on NT and most Unix systems. It should also compile
on other platforms which provide the POSIX API, but some configuration may be
required in areas not covered by POSIX (or not adequately supported on the platform
in question). See section 1.1.3 for configuration suggestions.

1.1.1 Win32

The distribution does not include an installation program. To install the pre-compiled
library, extract rexxutil.dll from the installation zip file and copy it to either a directory
in your program search path or the directory containing the rexx executable (this is
usually regina.exe unless you are using a rexx-enabled application, in which case it’s
the application executable).

Only rexxutil.dll is required to use the library, and applications using RegUtil can
be distributed with only this file. The documentation file, regutil.pdf, should also be
distributed if end users are expected to write macros using these functions.

See section 1.1.3 for information about compiling the library from source code.

1.1.2 Unix

The distribution does not include a configuration script, but it includes make files which
have been known to work using the stock vendor compiler on several Unix systems. If
you have one of those systems, link the appropriate make file to the name ‘Makefile’
and build the ‘dist’ target. For instance, on Solaris:

2 1 INTRODUCTION

ln Makefile.sun Makefile
make dist

On most platforms, this builds a shared library called librexxutil.so. On HP-UX,
the file is called librexxutil.sl, and on AIX, it’s called librexxutil.a. The path to this
library can be set in three ways:

Most Unix systems allow a shared library search path to be embedded into program
files. If you build regina (or your rexx-enabled application) such that this path is set
to include a directory such as /opt/regina/lib or /usr/local/lib, you can install regutil by
copying the shared library to this directory (see section 1.1.3 for more information). If
this is not possible, you need to either set an environment variable or change the way
the system searches for shared libraries.

Unix systems typically use a different path for shared libraries than they do for
program files. The name of the environment variable used for the shared library path
is not standardised, however most systems use LD_LIBRARY_PATH. Notable excep-
tions are AIX (LIBPATH) and HP-UX (SHLIB_PATH for 32-bit executables, LD_
LIBRARY_PATH for 64-bit executables). To install regutil, add an appropriate direc-
tory to the shared library path for your machine and copy the shared library to that
directory.

Finally, some systems provide a utility (often called ldconfig) which can be used
either to set the standard search path for shared libraries, or to provide a database of
shared libraries. On such a system, regutil can be installed by copying the shared
library to an appropriate directory and using this utility to add it to the search database.
You’ll need to consult your system documentation for more information.

1.1.3 Notes on Compiling

I provide make files for the stock vendor compilers on several Unix systems. On Win-
dows, I provide make files for visual c++ (Makefile.nt) and the MinGW port of gcc
(Makefile.mingw). The Unix make files set platform-specific variables and then load
Makefile.inc, which contains the rules for building the libraries. The win32 make files
contain all the rules for building the library with their respective compilers. I find it
convenient to either link or copy the platform-specific make file to the name Makefile.

By default, the library is built with optimisation disabled and debugging symbols
included. This is convenient for library development, however the library will give
better performance if you build the dist target (with the command ‘make dist’).

To port the library to a new platform or to a new compiler on a platform for which
a make file exists, it should be sufficient to copy an existing make file and change some
of these variables. On Unix, to change the compiler for an existing platform, it should
be sufficient to redefine PCFLAGS and POPT. If the new compiler is gcc, the values
can be taken from Makefile.bsd. The intent of each variable is indicated in the table:

Variable Specific to Purpose
PDEBUG Compiler Flags in addition to -g required for creating programs

which can be examined in the debugger. This is irrele-
vant if only dist builds will be performed;

1.1 Installation 3

Variable Specific to Purpose
POPT Compiler Flags which cause optimisation to be performed by the

compiler. At least -O should be used for all production
code, in my opinion;

PCFLAGS Compiler Compiler flags which should be set for both debug
and optimised compilation. This should include a flag
for generating relocatable (sometimes called position-
independent) code;

PCDEFS Operating System Definitions which either report the capabilities of the sys-
tem or modify the behaviour of the library. These are
explained more fully below;

PLDFLAGS Operating System Flags for ld. This must include something to cause ld
to create a shared library. On most platforms, it is not
necessary to link to the Rexx shared library, but this may
require special ld flags;

PLIBS Operating System Libraries required to resolve symbols used in the library.
This does not generally have to include -lregina, but will
generally have to include libraries for the terminal inter-
face;

so Operating System The extension for shared objects (defaults to so);
REXX_INCLUDE Operating System The directory containing rexxsaa.h (defaults to

$HOME/include).

The win32 make files have a different set of make variables. Due to the nature
of the win32 development environment, the distinction between platform-specific and
compiler-specific values doesn’t exist.

Variable Purpose
DEBUG Flags required for creating programs which can be examined in the de-

bugger. This is irrelevant if only dist builds will be performed;
DOPT Flags which cause optimisation to be performed by the compiler;
CFLAGS Compiler flags which should be set for both debug and optimised com-

pilation. This should include $(OPT) and $(DEBUG), and may include
flags for creating relocatable code;

CDEFS Definitions which either report the capabilities of the system or modify
the behaviour of the library. These are explained more fully below;

LDFLAGS Flags for linking. This must include something to cause ld to create a
DLL. The NT make files use the compiler to link;

INCDIR The directory containing rexxsaa.h (defaults to ../include);
LIBDIR The directory containing the regina library (defaults to ..\include).

The code included in the library can be affected by defining several manifest con-
stants, by adding -Dnameto the CDEFS variable. These are:

4 1 INTRODUCTION

Name Used on Purpose
AIX AIX Allows alloca() to be used by the IBM compiler, and af-

fects the definitions included compiling mount-point in-
formation routines;

_WIN32 Win32 Defined by many win32 compilers. Used to distinguish
between Win32-specific and Unix-specific code;

SYSDI_RETURNS_BYTES All Causes SysDriveInfo to return the size of the drive in
bytes, which is compatible with IBM’s implementation;

USE_STATFS Unix Indicates that the system supports either the statfs() or
statvfs() system call. If this is not defined, SysDriveInfo
will not return any information. Must be used in conjunc-
tion with INCL_MOUNT, INCL_STATVFS, or INCL_
VFS;

INCL_MOUNT Unix Indicates that the statfs() call is defined in sys/mount.h;
INCL_STATVFS Unix Indicates that the statvfs() call is defined in sys/statvfs.h;
INCL_VFS Unix Indicates that the statfs() call is defined in sys/vfs.h;
HAS_F_MNTFROMNAME Unix Indicates that the statfs structure has a member called f_

mntfromname;
MACROSPACE All If this is not defined, the Sys*Macro*() functions are

stubs. It is not defined by default because some Regina
releases do not include the necessary API functions, and
no current Regina release provides working versions of
the API functions;

NOT_LIKE_IBM Win32 Affects the output of SysGetKey() when processing non-
glyph keys. If it is defined (the default), pressing,e.g.,
an arrow key will return a string greater than one byte in
length describing the key that has been pressed. Other-
wise, such keys return 0 on the first call to SysGetKey()
and some non-zero value on the second call;

USE_TERMCAP_DB Unix If set, screen clearing, positioning,etc., are performed
using the termcap or terminfo database, which provides
escape sequences specific to each type of terminal. If not
set, the library assumes the terminal understands ANSI
control sequences;

USE_TERM_H Unix If both this and USE_TERMCAP_DB are set, the system
uses termcap-compatible routines which are part of the
curses screen update library;

THREAD_SAFE Unix Define this name if you intend to use semaphores to sup-
port inter-thread communication on Unix. It causes cer-
tain operations to be protected by mutex locks;

_SEMUN_DEFINED Unix Define this name if sys/sem.h defines ‘union semun’;
MMAP Unix Enables memory-mapped I/O for certain operations. De-

fine this if your system supports the mmap() call;
MAPVIEWOFFILE Win32 Enables memory-mapped I/O for certain operations;

1.2 Reporting Bugs 5

Name Used on Purpose
HAS_WCHAR Unix Define this if your system has defines wchar_t and pro-

vides mbstowcs() and wcstombs(). Otherwise, the de-
fault unicode conversions assume ISO 8859-1;

HAS_ICONV Unix Define this if your system has iconv.h. Otherwise, the
only allowable unicode conversions are to and from ISO
8859-1, UTF-7, and UTF-8;

ICONV_UTF16 Unix Define this string if your system has iconv.h and your
iconv implementation uses a string other than UCS-2 for
Unicode;

HAS_GETBOOTFILE Unix Define this if your system has getbootfile in paths.h;
DYNAMIC_STATIC All Define this to allow static linking with the Rexx ex-

ecutable (a Regina-specific extension). This defines
the function getRexxUtilFunctionAddress(). You must
define HAVE_REXXUTIL_PACKAGE when compiling
Regina’s staticld.c.

1.2 Reporting Bugs

Theorem A: Every program can be reduced by at least one line.

Theorem B: Every program contains at least one bug.

Corollary: Every program can be reduced to one line which doesn’t work correctly.

Regutil undergoes very little testing before new releases are shipped. I have not had
the time to produce a regression test, for instance, and although it is on my list of things
to do, the pressures of work and life keep me from doing it. Since the first ‘full’ release
of Regutil (1.0.4) in February 1999, there have been surprisingly few bugs discovered,
given the amount of testing it undergoes at this end. When bugs are reported, I do my
best to fix them and to get a new release out within a short time. My time tends to be
very tight, though, so I can’t make any guarantees.

If you do find a bug, an error in the documentation, or you simply have a suggestion
for improving the distribution, please send me details at ptjm@interlog.com. It’s useful
to know the operating system you’re using, the version of Regina (or Rexx/IMC), and
the version of regutil, and to have a set of steps for reproducing the bug.

If you are using regutil for a serious purpose and therefore take the time to produce
a test suite for your own use, I would appreciate it if you’d contribute it to the cause.

1.3 Using RxFuncAdd

All the routines in RegUtil can be loaded either directly using RxFuncAdd, or indirectly
using SysLoadFuncs. RxFuncAdd takes three arguments – the name of the function as
it will be used in the rexx program, the name of the library from which to load the
function, and the name of the function as it appears in the library.

6 1 INTRODUCTION

RxFuncAdd returns 0 on success, or 1 on failure. Regina has a function called
RxFuncErrMsg which can give useful information about the reason for a load failure.
A few common reasons for failure are:

Path issues: the library is called rexxutil.dll on Win32 platforms, librexxutil.a on
AIX, librexxutil.sl on HP-UX, and librexxutil.so on other Unix platforms. On Win32,
this file needs to be in the path, or in the directory containing regina.exe. On Unix
systems, it needs to be in a directory listed in LIBPATH on AIX, SHLIB_PATH on
HP-UX 32-bit, or LD_LIBRARY_PATH on most other Unix systems. Some systems
have an ldconfig utility which allows you to forego setting this environment variable.

Windows 95: early releases of windows 95 did not include msvcrt.dll, the C run-
time library used by RegUtil. This library is sometimes installed with applications
software. It can also be obtained through service packs, or from the Microsoft web
site.

Rexx.exe: Regina includes two executables, one called ‘rexx’, and the other called
‘regina’. The difference is that ‘rexx’ includes the Rexx interpreter as part of the exe-
cutable, while ‘regina’ loads the interpreter from a shared library. RxFuncAdd works
only with the ‘regina’ version of the interpreter (the ‘rexx’ version is slightly faster,
though).

Case: older versions of Regina required that the case of a function name passed to
RxFuncAdd match the case of the function name in the shared library (which is always
lower-case in RegUtil). The effect of this was that OS/2 code which looks like this

call rxfuncadd ’SysFileTree’, ’RexxUtil’, ’SysFileTree’

would fail, and had to be re-written like this

call rxfuncadd ’sysfiletree’, ’rexxutil’, ’sysfiletree’

There could also be problems with the library name on Unix systems. Recent versions
of Regina contain an effective work-around to this problem, so the solution may be to
upgrade.

1.4 Licencing

Regutil is distributed free of charge in the hopes that it will be useful, but without any
warranty. Previous versions of the library have been distributed under the terms of
the GNU Library General Public License. This version is distributed under the terms
of the Mozilla Public License. The precise details of the licence are found in the file
MPL-1.0.txt in the distribution.

If you use the library purely as distributed by me, then you can cheerfully ignore
the licencing change. If you modify the source code or adopt portions of it in your
own programs or libraries, you should be aware of and fulfill your obligations under
the licence. I believe that the restrictions placed by the Mozilla licence are less onerous
than the ones in the GNU Library licence, and they are more in the spirit in which I
would like my work to be distributed.

Although there are no obligations or restrictions related to use of the library, I
would prefer that you do not use regutil in applications which cause injury or hardship

7

to others. Also, if you derive a significant monetary benefit from the use of regutil,
please share a portion with someone less fortunate. For instance, if you save $10,000 by
implementing an application with Regina and regutil, rather than buying a commercial
Rexx interpreter, you could give $1,000 to Unicef.

2 Housekeeping Routines

These are routines which help you use the other routines.

2.1 SysLoadFuncs

sysloadfuncs() -> 0

SysLoadFuncs registers all the other routines in the utility package with the Rexx
interpreter. This registration takes less work on your part than registration using rxfun-
cadd, and it’s probably faster to use sysloadfuncs whenever you need more than one
utility function, plus it’s less typing.

2.2 SysDropFuncs

sysdropfuncs() -> 0

SysDropFuncs removes the registration of all the utilities in the package from the
Rexx interpreter. I don’t feel there’s a compelling reason for doing this, and it has the
potential to be positively harmful in the IBM interpreters, since they don’t do proper
reference counting for load/drop. It’s safe to call SysDropFuncs even if you didn’t load
all the functions using SysLoadFuncs.

3 File System Routines

The file system routines manipulate files and directories in useful ways.

3.1 List of File System Routines

SysCopyObject (from,to)→ 0 or failure: copies a file

SysCreateShadow (from,to)→ 0 or failure: creates a link to a file

SysFileDelete (file)→ 0 or failure: deletes a file

SysFileSearch (target,file,stem, [options])→ 0 or failure: searches a file for some text

SysFileSystemType (file)→ string: returns the name of the file-system in use for file

SysFileTree (filespec,stem, [options], [tattrib], nattrib])→ 0 or failure: search for files match-
ing filespec

8 3 FILE SYSTEM ROUTINES

SysMkDir (directory)→ 0 or failure: creates a new directory

SysMoveObject (from,to)→ 0 or failure: renames a file

SysRmDir (directory)→ 0 or failure: removes a directory

SysSearchPath (var,file)→ full filename: searches a list of directories from an environment
variable for a file

SysTempFileName (template, [filter])→ name: returns a temporary name based on a template;

SysGetFileDateTime (name[, which])→ timestamp: returns a timestamp for a file;

SysSetFileDateTime (name[, date[, time]])→ 0 or failure: sets the modification timestamp for a file;

3.2 Example

Here’s a script which creates a directory with a temporary name, finds the file rgb.txt
somewhere on the system, searches it for all different kinds of blue, and writes them
out to another temporary file in the temporary directory.

call rxfuncadd ’sysloadfuncs’, ’rexxutil’, ’sysloadfuncs’
call sysloadfuncs

/* make a temporary directory */
dir = SysTempFileName(’dir?????’)
call SysMkDir dir

/* find an rgb.txt out there somewhere */
if SysFileTree(’/rgb.txt’, ’RGB.’, ’SO’) = 0 & rgb.0 > 0 then do

if SysFileSearch(’blue’, rgb.1, ’BLUE.’) = 0 then do
file = SysTempFileName(dir’/blue?????’)
do i = 1 to blue.0

call lineout file,blue.i
end

end
end

exit 0

3.3 SysCopyObject

SysCopyObject(from,to) -> 0 or failure

Copies the file named byfrom to a new nameto. The access and modification times
are preserved, for file systems that maintain that sort of arcane information. Under
OS/2, this file will also copy workplace shell objects. Obviously, that doesn’t work on
other systems. Returns 0 on success. See SysFileDelete, section 3.5, for the meanings
of the non-zero failure codes.

3.4 SysCreateShadow 9

3.4 SysCreateShadow

SysCreateShadow(from,to) -> 0 or failure

Under Unix, SysCreateShadow creates a link to thefromfile, under the nameto. If
possible, this is a hard link, but a symbolic link is made if necessary (e.g., if the from
andto directories are on different devices). Note that the symbolic link will not work
correctly unless thefrom file is specified as a full path, so it’s best to specify full paths
if the potential to cross devices exists.

Under NT, I intend for SysCreateShadow to create short-cuts. Currently, to create
a short-cut, you can use my other package, w32funcs.

Returns 0 on success. See SysFileDelete, section 3.5, for the meanings of the non-
zero failure codes.

3.5 SysFileDelete

SysFileDelete(file) -> 0 or failure

Deletes the file specified byfile. Returns 0 on success. On failure, it returns 1
(unknown cause of failure), 2 (no such file), 3 (path to file does not exist), 5 (insufficient
rights), 32 (file in use by another process), 36 (too many symbolic links on the way to
the file), 87 (invalid file name), and 206 (file name is too long).

3.6 SysFileSearch

SysFileSearch(target,file,stem, [options]) -> 0 or failure

Searches the filefile for the text in target, and puts the matching lines instem.
Stem.0receives a count of the lines, and lines are indexed sequentially starting with
stem.1. By default, the search is case-insensitive, however it can be made case sensitive
by specifying the option ‘c’. The other option ‘n’ causes each output line to have the
line number infile to be prepended to it.

The function returns 0 on success. On failure, it returns 2 (insufficient memory) or
3 (could not openfile for reading).

3.7 SysFileSystemType

SysFileSystemType(file) -> string

Returns the file system type used for the specified file. For NT, this should be just
the drive letter and a colon, although it may be a full path to a file (I believe this is an
enhancement over IBM’s implementation, so be careful). For Unix, it should be the
full path to the file of interest.

On success, returns the file system name if it could be determined (or ‘UFS’ if it
couldn’t be), or the empty string if the drive or mount point is not accessible.

10 3 FILE SYSTEM ROUTINES

3.8 SysFileTree

SysFileTree(filespec,stem, [options], [tattrib],
[nattrib]) -> 0 or failure

Finds all files whose names matchfilespec, and writes their names intostem. file-
specmay contain wild-card characters such as are normally allowed on the platform in
question. On NT, I believe this limits you to ‘*’, which matches 0 or more occurances
of any character, and ?, which matches exactly one occurance of any character. On
Unix, the glob() routine, which usually follows the rules of /bin/sh, is used. This al-
lows character classes ([a-e] matches any letter from a to e, for instance), and probably
other features which don’t come to mind. Iffilespecends with a directory separator
character (slash on Unix, back-slash or slash on NT), the routine acts as if the pattern
had ended with ‘*’.

optionscontrols how directories are searched, and how the output is delivered. By
default, the output is the time-stamp, size, file attributes, and full path to the file, for
every file and directory which matchesfilespec. If optionsincludes an ‘f’, only files are
reported. If it includes a ‘d’, only directories are reported. If it contains ‘b’, both files
and directories are reported. If more than one of these is given, the right-most one wins.
If optionscontains ‘s’, SysFileTree searches sub-directories for files matchingfilespec.
If it includes ‘o’, only the full path to the file is reported. If it includes ‘t’ time-stamp
is returned in the format yyyy/mm/dd/hh/mi. Note that IBM’s implementation uses
2-digit years. Ifoptionsincludes ‘l’, the time-stamp is returned in the format yyyy-
mm-dd hh:mi:ss, which can be processed with the Rexx date() and time() functions.

On Unix systems, the attributes are returned in the usual format from ls -l: the first
byte is ‘-’ for a normal file or ‘d’ for a directory, and it is followed by three ‘rwx’
pairs indicating the read, write, and execute permissions for each of the user, group,
and others. On NT, the attributes are ADHRS, matching the archive, directory, hidden,
read-only, and system bits.

tattrib allows the user to specify the file attributes which should be matched. For
each position in ADHRS, ‘*’ means match regardless of the state of the bit, ‘+’ means
to match if it’s set, and ‘-’ means to match if it’s not set. Thus ‘*-*+*’ would match
all non-directories with the read-only bit set. For Unix systems, the DOS attribute
positions are preserved, but they’re given meanings which are specific to this imple-
mentation:

Attribute ‘+’ match files ‘-’ match files
A with more than one hard link with exactly one hard link;
D with execute permission without execute permission;
H without read permission with read permission;
R without write permission with write permission;
S with owner id less than 10 with owner greater than or equal to 10.

In IBM’s implementation,nattrib uses the same scheme to specify how these at-
tributes should be changed by this function (which otherwise has no effect on its envi-
ronment).nattrib is not supported by this implementation.

3.9 SysMkDir 11

3.9 SysMkDir

SysMkDir(directory) -> 0 or failure

Creates a sub-directory with the specified name. On Unix systems, this is created
with the permissions rwxr-xr-x, masked with the value of the process’s umask.

On success, returns 0. On failure, it returns 1 (unknown cause of failure), 2 (no
such file), 3 (path to file does not exist), 5 (insufficient rights, quota exceeded, or the
directory already exists), 36 (too many symbolic links on the way to the file), 87 (invalid
file name), 108 (file system is read-only), and 206 (file name is too long).

3.10 SysMoveObject

SysMoveObject(from,to) -> 0 or failure

SysMoveObject renames the filefrom to to. If these files are on different devices,
the file is copied and then the original file is deleted, otherwise only the diretory entries
are manipulated.

Under OS/2, this function will also move workplace shell objects. Obviously, that
doesn’t work on other systems. Returns 0 on success. See SysFileDelete, section 3.5,
for the meanings of the non-zero failure codes.

3.11 SysRmDir

SysRmDir(directory) -> 0 or failure

Removes the sub-directory with the specified name.
On success, returns 0. On failure, it returns 1 (unknown cause of failure), 2 (no

such file), 3 (path to file does not exist), 5 (insufficient rights, quota exceeded, or the
directory already exists), 16 (some other process is using the directory), 36 (too many
symbolic links on the way to the file), 87 (invalid file name), 108 (file system is read-
only), and 206 (file name is too long).

3.12 SysSearchPath

SysSearchPath(path,file) -> full filename

Searches the list of directories specified bypath for the file specified byfile. Each
element of the path is separated by the usual path separator for the platform (e.g., ‘:’ on
Unix and ‘;’ on NT). The full file name must be specified (that is, ‘regina.exe’ rather
than just ‘regina’).

On success, returns the full path to the file. On failure, returns the empty string.

3.13 SysTempFileName

SysTempFileName(template, [filter]) -> name

12 4 SYSTEM ROUTINES

Given a prototype filenametemplate, with up to five wild-card characters, return a
the name of a file which does not already exist, replacing the wild-card characters with
numbers. By default, the wild-card characters is the question mark (?), but it can be
any character specified byfilter.

The routine works by first generating a pseudo-random number and using Digits
from this number to replace the wild-card characters, and then incrementing the number
until there’s no file matching the name generated from the template.

If it’s not possible to generate a unique temporary file name, returns the empty
string (which is a step up on previous releases, which simply kept trying until you
happened to delete a file or killed the process).

3.14 SysGetFileDateTime

SysGetFileDateTime(name [, which]) -> timestamp

SysGetFileDateTime returns a time-stamp associated with the file identified by
name. The timestamp is returned in the format ‘yyyy-mm-dd hh:mi:ss’.

If which is ‘modify’, the time of the last modification is returned. If it’s ‘access’,
the time of last access is returned. If it’s ‘create’, the file creation time is returned.
Only the first letter of each of those options is significant. If the file system doesn’t
support access and creation times, the function returns the last modification time for
everything.

3.15 SysSetFileDateTime

SysSetFileDateTime(name [, date [, time]]) -> success

SysSetFileDateTime sets the last modification time of the file specified bynameto
the date and time specified bydateandtime. The format ofdateis ‘yyyy-mm-dd’, and
the format oftime is ‘hh:mi:ss’.

If neitherdatenor timeare specified, the last modification time is set to the current
time. If dateis specified buttime is not, only the date is changed. Iftime is specified
by dateis not, only the time is changed.

Returns 0 on success, or –1 on failure.

4 System Routines

The system routines return information about the operating system, library, or active
processes, or perform process-control operations. This is the major area of incomplete-
ness in the library.

4.1 List of System Routines

SysIni ([inifile],app,key,val,stem)→ value: retrieve values from .ini files;

SysBootDrive ()→ value: returns the drive from which NT was booted, or the name of the
Unix kernel file;

4.2 SysIni 13

SysUtilVersion ()→ value: returns the regutil version;

SysVersion ()→ value: returns the operating system version;

SysWinVer ()→ value: returns the operating system version;

SysOS2Ver ()→ value: returns the operating system version;

SysLinVer ()→ value: returns the operating system version;

SysVersion ()→ value: returns the operating system version;

SysUtilVersion ()→ value: returns the version of this library;

SysDriveInfo (drive)→ returns the free space on the drive, or the partition containing the
argument;

SysDriveMap ([drive],[opt])→ list: lists accessible drives;

SysGetErrorText (errno)→ text: returns the standard system error text for an error number;

SysSetPriority (class,delta)→ 0 or success: set the priority of the current process;

SysQueryProcess (thing)→ 0 or success: get the process ID, or some canned data;

SysSleep (time)→ 0 or success: block for the specified period of time;

SysSwitchSession (name)→ 0 or success: brings a named application to the foreground;

SysSystemDirectory ()→ value: returns the name of the system directory;

SysVolumeLabel (drive)→ returns the label on a specified drive;

SysWaitNamedPipe (name,[timeout])→ 0 or failure: waits on a named pipe.

4.2 SysIni

SysIni([inifile],app,key[,val]) -> value
SysIni([inifile],app,’all:’,stemname) -> value
SysIni([inifile],’all:’,stemname) -> value

Retrieves a value from a Windows 3.1-style .ini file. I originally planned to use
this function to retrieve values from the NT Registry as well, but that would lead to
incompatibility with IBM’s implementation. To read the registry, you can use my other
package, w32funcs. SysIni was first made available for windows in version 1.1.8, and
for Unix in version 1.1.12 of the library.

inifile is the name of the .ini file. The default is ‘win.ini’. If you don’t specify a
path, the .ini file is expected to be in the system directory on Windows, but the current
directory on Unix.

app is the name of a block of parameters in an .ini file. The block names appear
in brackets in the file.key is the name of the parameter being retrieved or set.val is

14 4 SYSTEM ROUTINES

the value to set the parameter to.stemnameis the name of a stem variable into which
application or key names can be enumerated.

If appandkeyare specified, butval is not, the current value of the specified key is
returned.

If val is ‘delete:’, the specified key is deleted. Ifkey is ‘delete:’ or not specified,
the entire block of parameters is deleted. Note that ifkeyis not specified, the ‘delete:’
keyword is optional. The entire block of parameters will be deleted. It’s not me, it’s
IBM.

If keyis ‘all:’, the names of the keys in the block are returned instemname, follow-
ing the numeric index convention. Ifapp is ‘all:’, the names of all the blocks in the file
are returned instemname.

4.3 SysBootDrive

SysBootDrive() -> value

Under NT, SysBootDrive returns the letter of the drive from which the system was
booted (e.g., ‘C:’ if the system was booted from drive c). This is mostly useful under
OS/2 when you want to change the correct config.sys file. Under Unix, SysBootDrive()
will return the name of the kernel from which the system was booted, or ‘/vmunix’ if
it isn’t implemented.

4.4 SysWinVer

SysWinVer() -> value

Returns the system id and version in the format ‘id major.minor’. For NT, id is
‘Windows95’ or ‘WindowsNT’. For Unix, it is the value returned by the command
‘uname -s’.

4.5 SysOS2Ver

SysOS2Ver() -> value

SysOS2Ver is a synonym for SysWinVer. Lesson 1 in writing portable APIs: don’t
change the function names when you move from one platform to another, the way IBM
did.

4.6 SysLinVer

SysLinVer() -> value

SysLinVer is another synonym for SysWinVer.

4.7 SysVersion

SysVersion() -> value

SysVersion is yet another synonym for SysWinVer. (Lesson 1 learned, I suppose).

4.8 SysUtilVersion 15

4.8 SysUtilVersion

SysUtilVersion() -> value

SysUtilVersion returns the version number of the regutil library. Because the li-
brary is not strictly compatible with IBM’s RexxUtil library, it does not return the same
version numbers. The value returned by SysUtilVersion is the major version number
followed by the minor version and release numbers, concatenated together. For in-
stance, for version 1.1.5, the return value is 1.15. For 1.1.10, the return value would be
1.1101 (the extra digit is to distinguish it numerically from 1.1.1).

4.9 SysDriveInfo

SysDriveInfo(drive) -> value

Under NT, returns the free space on the specified drive in the format ‘drive free
total label’. label is the label of the drive, if any.freeandtotal are the number of bytes
free, and the total number of bytes on the drive.drive is the argument.

Under Unix, instead of drive, any file or directory name can be specified, and the
information for the file’s partition will be returned. Thedrive returned is the volume’s
mount point, and thelabel is the actual device name.

4.10 SysDriveMap

SysDriveMap([drive],[opt]) -> list

This function is not implemented for most Unix systems.
Under NT, SysDriveMap returns a list of accessible drives. Under Unix, it returns

a list of mounted partitions. The optionaldrive argument specifies the first drive to
consider under NT, but has no effect on Unix.

optcan be one of the following values:

USED List all accessible drives or mount points;

FREE For NT, lists available drive letters (that is, if you have only a C: drive, it will list
all the letters from D: to Z:). Under Unix, it does nothing;

LOCAL Lists only local files systems. Under NT, this means drives which are actually on
the local machine and use a standard file system;

REMOTE Under Unix, returns only NFS and Samba-mounted drives. Under NT, returns
LAN drives, and drives mounted using an installable file system;

REMOVABLE Lists drives which are not fixed or network drives, such as floppies and ZIP
drives, but excluding CD-ROM drives;

CDROM Lists CD-ROM drives;

RAMDISK Lists ram disks.

16 4 SYSTEM ROUTINES

4.11 SysGetErrorText

SysGetErrorText(errno) -> text

SysGetErrorText returns the standard system error message associated with the er-
ror numbererrno. If there is no such text, it returns the empty string.

The intent is that when another routine returns an error number, you can get some
idea of what the error number means, however the return codes from the rexxutil rou-
tines are not always system error numbers, so it might not be as useful as it sounds at
first.

4.12 SysSetPriority

SysSetPriority(class,delta) -> success code

Sets the priority of the current process. Possible values forclass(NT only) are:

0 Don’t change priority class;

1 Change class to idle;

2 Change class to normal;

3 Change class to ‘real time’;

4 Change class to ‘server’.

Don’t use any value other than 0 unless you know what you’re doing.
deltacan be any value between -31 and 31. 31 tries to increase the priority as much

as it can, and -31 tries to decrease the priority as much as it can.
On success, SysSetPriority returns 0. On failure, it returns a return code which I

may document some day.

4.13 SysQueryProcess

SysQueryProcess(thing) -> data

SysQueryProcess returns information based on its input:

PID process id;

TID thread id (currently always returns 0 on Unix);

PPRIO process priority (currently always returns NORMAL);

TPRIO thread priority (currently always returns NORMAL);

PTIME process time used;

TTIME thread time used (currently always returns process time used);

Currently, only PID and PTIME give anything like useful information. TID works
for NT.

4.14 SysSleep 17

4.14 SysSleep

SysSleep(time) -> success code.

SysSleep blocks the current process fortime seconds. Time may be a fraction
of a second (e.g., .24 or 6.5), but note that this is incompatible with IBM’s original
SysSleep. It is compatible with the Object Rexx SysSleep, and it’s useful.

Calling SysSleep is better than, say, looping on calls to time(). This is called ‘busy
waiting’:

endtime = time(’s’)+2
do while time(’s’) < endtime

nop
end

and it’s bad because it uses all kinds of CPU cycles simply testing the current time.
The equivalent code using SysSleep:

call SysSleep 2

has the same effect on the program, but doesn’t use additional cycles because the block-
ing is handled by the system scheduler, which is constantly testing the current time
anyway.

4.15 SysSwitchSession

SysSwitchSession(name) -> success code

SysSwitchSession is supposed to bring the session identified bynameto the fore-
ground. Under NT, where it is implemented,nameis the name on the title bar. I’ll tell
you more about the Unix implementation when it’s done.

This function is not implemented on Unix.

4.16 SysSystemDirectory

SysSystemDirectory() -> value

Under NT, returns the name of the system directory, which is generally WinNT on
the boot drive. On Unix, it returns ‘/etc’.

4.17 SysVolumeLabel

SysVolumeLabel(drive) -> name

On NT, returns the label on a specified drive. On Unix, returns the device file
associated with the specified volume.

This function is not implemented on Unix.

18 5 MACRO-SPACE MANIPULATION ROUTINES

4.18 SysWaitNamedPipe

SysWaitNamedPipe(name [, timeout]) -> 0 or success

Waits for the specified named pipe to become readable. The named pipe name must
have the format\\server\pipe\name on NT, whereserveris the name of a server
machine (or ‘.’ for the local machine),pipeis ‘pipe’, andnameis a name which doesn’t
include any slashes or back-slashes. On Unix, a named pipe is just a fifo and can have
any name.timeoutis specified in milliseconds. –1 means there is no timeout. 0 and
omitting the timeout value cause the operation to wait some default period of time.

If there is data to read on the pipe, returns 0. If the operation times out, returns
1460. Otherwise, it returns a system-defined error number.

5 Macro-Space Manipulation Routines

The macro-space manipulation routines allow a program to control the macros avail-
able in the execution environment. Most usefully, they allow external macros to be
loaded in to the local macro address space, and they allow collections of macros to
be saved to, and loaded from, a compact, binary format. This allows library functions
to be stored externally and loaded quickly, and it may allow proprietary code to be
shipped in a format which is not susceptible to casual inspection.

As of version 2.2, the necessary API is provided only as a set of ‘stub’ routines in
Regina, so these routines are not yet functional. They are not included in pre-compiled
versions of regutil, since this would force people to upgrade to Regina 2.2. They can
be included in a build for use with a later version of Regina or with another interpreter,
by adding “-DMACROSPACE” to the CFLAGS line in the appropriate make file.

5.1 List of Macro-Space Manipulation Routines

SysAddRexxMacro (name, file, [order])→ 0 or failure : adds a macro;

SysClearRexxMacroSpace ()→ 0 or failure : clears all macros;

SysDropRexxMacro (name)→ 0 or failure : drops a macro;

SysLoadRexxMacroSpace (file)→ 0 or failure : initialises a macro-space from a file;

SysQueryRexxMacro (name)→ ‘B’, ‘A’ or ‘’ : determines whether a macro is defined;

SysReorderRexxMacro (name,order)→ 0 or failure : moves the search order of a macro;

SysSaveRexxMacroSpace (file)→ 0 or failure : saves a macro space to a file.

5.2 SysAddRexxMacro

SysAddRexxMacro(name, file, [order]) -> 0 or failure

5.3 SysClearRexxMacroSpace 19

Reads a macro callednamefrom a file calledfile and makes it available to the
current program. Iforder is specified and starts with ‘A’, the macro name will be
added to the end of the macro space. Otherwise, it will be added to the beginning. See
SysReorderRexxMacro5.7 for a discussion of what this means.

Macros loaded using SysAddRexxMacro have the useful characteristics of external
functions (they are stored in a separate file) but act like locally defined procedures (they
can access global stem variables, for instance).

Returns 0 on success. The other possible return codes from the macro-space func-
tions are 1 (not enough storage available), 2 (requested function not found), 3 (file
extension required for save), 4 (macro functions exist), 5 (file I/O error in save/load),
6 (incorrect format for load), 7 (requested cannot be found), 8 (invalid search order
position), and 9 (API not initialized).

5.3 SysClearRexxMacroSpace

SysClearRexxMacroSpace() -> 0 or failure

Clears all macros previously loaded using SysAddRexxMacro or SysLoadRexx-
MacroSpace from the macro space.

Returns 0 on success. See SysAddRexxMacro, section 5.2, for the other possible
return values.

5.4 SysDropRexxMacro

SysDropRexxMacro(name) -> 0 or failure

Drops the named macro fromt he macro space. The macro must have previously
been loaded using SysAddRexxMacro or SysLoadRexxMacroSpace.

Returns 0 on success. See SysAddRexxMacro, section 5.2, for the other possible
return values.

5.5 SysLoadRexxMacroSpace

SysLoadRexxMacroSpace(file) -> 0 or failure

Loads all macros from the filefile, which must have been saved using SysSave-
RexxMacroSpace. It’s not guaranteed that macro space files will be compatible be-
tween releases of Regina. Itis guaranteed that they will not be compatible between
different Rexx implementations.

Returns 0 on success. See SysAddRexxMacro, section 5.2, for the other possible
return values.

5.6 SysQueryRexxMacro

SysQueryRexxMacro(name) -> ’A’, ’B’, or ’’

Searches the macro space for a function calledname. If it finds it, it returns ‘A’ if
the macro was loaded using load order ‘after’ or ‘B’ if it was loaded using load order
‘before’. If it doesn’t find it, returns the empty string.

20 6 CONSOLE I/O ROUTINES

5.7 SysReorderRexxMacro

SysReorderRexxMacro(name,order) -> 0 or failure

Changes the search order for macroname. If order begins with ‘B’ (‘before’), the
function from the macro space will override any locally-defined function of the same
name. If it begins with ‘A’ (‘after’), any locally-defined function will over-ride the
version loaded into the macro space.

Returns 0 on success. See SysAddRexxMacro, section 5.2, for the other possible
return values.

5.8 SysSaveRexxMacroSpace

SysSaveRexxMacroSpace(file) -> 0 or failure

Saves all macros loaded using SysAddRexxMacro or SysLoadRexxMacroSpace to
a file calledfile. The file name must include an extension.

Returns 0 on success. See SysAddRexxMacro, section 5.2, for the other possible
return values.

6 Console I/O Routines

The console I/O routines allow simple terminal-mode updates. The Curses library gives
more flexibility, and will be more efficient over slow connections. Rexx/TK is currently
the best option for implementing GUI interfaes.

I originally considered implementing these routines using curses, but the value
added would be slight (SysCurPos and SysTextScreenRead are the only functions
which would be fixed by this), and the availability of the full curses package makes
the effort redundant.

6.1 List of Console I/O Routines

SysCls () : clears the screen;

SysCurPos ([row],[column])→ row column: moves the cursor, and returns its current posi-
tion on the screen;

SysCurState (state): makes the cursor visible or invisible;

SysGetKey ([echo],[timeout]): retrieves a keystroke;

SysTextScreenRead (row,column,len)→ text: reads the screen;

SysTextScreenSize ()→ rows columns: gets the size of the screen;

RxMessageBox (text, [title], [button], [icon])→ button id: displays a message box and returns
the button selected.

6.2 Example 21

6.2 Example

Here’s a script which prints an X of screen positions on the screen, then waits for a
keypress.

call rxfuncadd ’sysloadfuncs’, ’rexxutil’, ’sysloadfuncs’
call sysloadfuncs

call syscurstate ’off’
call syscls

parse value systextscreensize() with rows cols

top=min(rows,cols)-1

do i = 1 to top
call syscurpos i,i
call charout ’stdout’, ’(’i’,’ i’)’
call syscurpos i,top-i+1
call charout ’stdout’, ’(’i’,’ top-i+1’)’
end

call SysGetKey ’noecho’
call syscurstate ’on’
call SysDropFuncs
say ’’

6.3 SysCls

SysCls()

SysCls clears the screen as quickly as possible.

6.4 SysCurPos

SysCurPos([row],[column]) -> row column

SysCurPos sets the cursor position torow andcolumn, and returns the former posi-
tion. If row andcolumnare not returned, it doesn’t move the cursor. I don’t know how
to retrieve the current position on Unix, so it always returns 0 0 on that platform. For
more advanced screen handling, consider using the RxCurses package.

6.5 SysCurState

SysCurState(state)

SysCurState makes the cursor visible or invisible. Ifstateis ‘on’, the cursor is made
visible. If it is ‘off’, the cursor is made invisible.

22 6 CONSOLE I/O ROUTINES

6.6 SysGetKey

SysGetKey([echo],[timeout]) -> keystroke

SysGetKey returns a keystroke. Ifecho is specified, and it is ‘n’ or ‘no’, the
keystroke is not displayed on the screen. Otherwise it is.

If timeoutis specified, it is a number of seconds to wait for input. As with SysSleep,
fractions of seconds are allowed. iftimeoutseconds pass without a key being pressed,
SysGetKey returns the empty string. By default, or iftimeoutis 0, SysGetKey waits
until a key has been pressed before returning. This behaviour is incompatible with
IBM’s implementation.

For compatibility with IBM’s implementation, function keys can be returned in an
ugly, system-dependent manner. For NT, this means that if SysGetKey returns a 0, you
must call it again, and the second return value tells you what key was pressed. For
Unix, it means something different again – generally, alt-keys will return either a high-
ascii value, or escape followed by the ascii value of the key, while function keys return
different escape sequences depending on the terminal.

The current release tries to return ‘f1’ for F-1, ‘Home’ for the home key, and so
forth. To figure out what gets returned, you have to press the keys and print it out.

6.7 SysTextScreenRead

SysTextScreenRead(row,column,len) -> text

SysTextScreenRead returns the characters printed on the screen forlen characters,
starting at positionrow,column. The end of line is indicated by a new-line character
(ascii value 10).

SysTextScreenRead is not implemented for Unix systems, because I don’t know
how to retrieve the information from a tty terminal.

6.8 SysTextScreenSize

SysTextScreenSize() -> rows columns

SysTextScreenSize returns the number of rows and columns in an NT text window,
or a Unix terminal. For NT, the size is the size of the buffer behind the window, so
if you have a scroll-back set up, for instance, the value will be larger than the actual
screen size. For Unix, the size is the size the kernel believes the terminal to be. This
will generally be accurate for xterms and many terminal emulators, but can be wrong if
you’re using a terminal emulator which uses non-standard sizes, on a system (HP-UX
comes to mind) which doesn’t account for that. The problem can be fixed by using the
stty command to tell the system the actual size of the window.

6.9 RxMessageBox

RxMessageBox(text, [title], [button], [icon]) -> button id.

23

RxMessageBox displays a message box on the screen and waits for the user to press
a button. It’s not a console I/O function, but it doesn’t seem to fit in anywhere else, so
I document it here.

Textis the text that will be written in the message box. The system will wrap long
text at around 120 characters, or 60% of the screen width (this is from observation – I
haven’t seen any system documentation on this). This tends to look ridiculous, so you
can force line breaks by adding a line-feed (character 10) to the string. See the example
for. . . an example.

Title is the text that is put on the title bar. By default, the title is ‘Error!’, meaning
that you really should specify something.

Icon is one of ‘hand’, ‘question’, ‘exclamation’, ‘asterisk’, ‘information’, or ‘stop’;
the default is ‘hand’. Note that ‘hand’ and ‘stop’ present the same icon, and on my
machine, it’s a sort-of X in a red circle, which is nothing like a hand or a stop-sign.
‘Question’ presents a question mark in a bubble. “Asterisk’ and ‘information’ present
the same icon, which is a lower-case i in a bubble, and exclamation is an exclamation
point in a yellow rhombus.

Buttonspecifies which buttons appear on the message box. It is one of ‘ok’ for an
OK button, ‘okcancel’ for an OK button and a Cancel button, ‘abortretryignore’, for an
abort button, a retry button, and an ignore button, ‘yesnocancel’ for a yes button, a no
button and a cancel button, ‘yesno’ for a yes button and a no button, and ‘retrycancel’
for a retry button and a cancel button.

The return code is a number from 1 to 7 indicating which button was selected by
the user. The numbers correspond to ‘OK’, ‘Cancel’, ‘Abort’, ‘Retry’, ‘Ignore’, ‘Yes’,
or ‘No’, respectively.

rcc = RxMessageBox(’Things are going badly, which is ’ ||,
’my fault, but your problem.’ || d2c(10) ||,
’Press cancel to give up, or retry to take ’ ||,
’another stab at it.’, ’Oops’, ’RetryCancel’)

/* cancel */
if rcc = 2 then do

say ’good choice’
exit 1
end

else do
say ’your funeral’
redo()
end

7 Stem Manipulation Routines

The stem manipulation routines are used to manipulate stem variables. Not all of the
options in IBM’s routines are supported, and regutil has a few extra functions which
are not available in IBM’s version.

Generally speaking, the stems must follow the numeric index convention. This is
a long-standing way of emulating numeric arrays in Rexx, where the .0 stem element

24 7 STEM MANIPULATION ROUTINES

holds the number of entries in the array (count), and elements 1 throughcounthold the
data.

I include sysdumpvariables() here even though it’s not specifically anything to do
with stems.

7.1 List of Stem Manipulation Routines

SysDumpVariables ([filename])→ 0 or -1: dump the names and values of all variables to a file;

SysStemCopy (from, to[, fromindex, toindex, count, insertoverlay])→ 0 or -1: copy a stem to
another stem;

SysStemDelete (stem, index[, count])→ 0 or -1: delete elements from a stem;

SysStemInsert (stem, index, value)→ 0 or -1: insert a value into a stem;

SysStemSort (stemname[, order] [,sensitivity] [,startpos,endpos] [,firstcol,lastcol])→ 0 or -1:
sort the elements of a stem;

RegStemDoOver (stem, variable[, outstem])→ 0 or 1: enumerates the indexes of a stem;

RegStemRead (filename, stemname)→ 0 or 1: read file into stem;

RegStemWrite (filename, stemname)→ 0 or 1: write file from stem;

RegStemSearch (needle, haystack[, start] [, flags])→ 0 or index: search a stem for a value.

7.2 Example

Here’s a script which reads a file into a stem, sorts the stem, and then writes it out to
the file again:

call rxfuncadd ’sysloadfuncs’, ’rexxutil’, ’sysloadfuncs’
call sysloadfuncs

call regstemread ’bob’, ’bob’
call sysstemsort ’bob’
call regstemwrite ’bob’, ’bob’

7.3 SysDumpVariables

SysDumpVariables([filename])

SysDumpVariables is a debugging aid which dumps all variables to the filefilename
in the format

Name=GREETING, Value="Have a nice day."

Nothing special is done with variables that include new-lines or quotes. If no file is
specified, the dump is written to standard output.

7.4 SysStemCopy 25

7.4 SysStemCopy

SysStemCopy(from, to[, fromindex, toindex, count, insertoverlay])

SysStemCopy copies stemfrom to to. The stems must currently follow the numeric
index convention (this might change in the future).

fromindexis the index number of the first element infromwhich should be copied.
toindex is the index number of the first target element into. The default for both
indices is 1.count is the number of elements to copy. The default is all of them. If
insertoverlayis ‘I’, the elements fromfrom are inserted intoto, and existing elements
in to are shifted. Otherwise, existing elements into are overwritten.

If toindexis beyond the end ofto, the array is extended and filled with zero-length
strings. If fromindex+count is greater than the number of elements infrom, only the
number of elements betweenfromindexand the end offrom are copied.

If the default options are given forfromindex, toindex, count, and insertoverlay,
from is copied exactly on top ofto. So, if to has 20 elements, andfromhas 10 elements,
the last 10 elements ofto will be deleted. Probably, this is a bug, but you can work
around it by passingcountasfrom.0.

7.5 SysStemDelete

SysStemDelete(stem, index[, count]) -> 0 or -1

Deletescountentries from a stem, starting at indexindex. The default count is 1.
The stem must follow the numeric index convention.

7.6 SysStemInsert

SysStemInsert(stem, index, value)

Insertsvalueat index positionindex. If there are elements with larger indices than
index, they are shifted up one. The stem must follow the numeric index convention.

7.7 SysStemSort

SysStemSort(stem[, order] [, sensitivity] [,startpos, endpos]
[,firstcol,lastcol])

SysStemSort sorts a stem. This is a pure ASCII sort, which doesn’t take into ac-
count any language-based collation sequence.order can be ‘ascending’ or ‘descend-
ing’, the default is ‘ascending’.sensitivitycan be ‘sensitive’ or ‘insensitive’, which de-
termines whether to fold upper-case letters into lower-case letters. Again, this doesn’t
take into account accented characters, although it might if Regina were to call setlo-
cale(3). Only the first letter of each of these options is significant.

If startposandendposare given, only elements fromstartposto endpos(inclusive)
will be sorted.

If firstcol and lastcol are given, elements will be sorted based on thefirstcolth to
lastcolth characters, inclusive. We start counting characters at 1.

The stem must follow the numeric index convention.

26 7 STEM MANIPULATION ROUTINES

7.8 RegStemDoOver

RegStemDoOver(stem, variablename[, outstem]) -> 0 or 1

RegStemDoOver simulates the object rexx construct ‘do x over y.’. It allows the
indices of a stem to be treated as data by retrieving each index in turn. It returns 1 while
there are additional elements, and 0 after the last element has been returned.

stemis the name of the stem.variablenameis the name of a variable to set to the
next stem index. If given,outstemis the name of a stem to set to the complete set of
indices ofstem, using the numeric index convention.

/* read values into a stem */
do until name = ’end’

parse linein name otherstuff
data.name = otherstuff
end

/* process the values */
do while regstemdoover(’data.’, ’i’)

/* skip the ‘end’ element. This is something
* to do with this dumb example, not a feature
* of regstemdoover */

if i \= ’end’ then
call somefunction i, data.i

end

The stem doesnot have to follow the numeric index convention (otherwise the
function would be a bit pointless, but I thought I’d mention it). You can’t nest calls to
RegStemDoOver. For instance, this code will not work as desired:

/* loop over indices of data */
do while regstemdoover(’data.’, ’i’)

/* and now loop over mana */
do while regstemdoover(’mana.’, ’j’

call somefunction i, j
end

end

Instead, you must first store the indices of ‘data’ in another stem.
Also, RegStemDoOver does not pick up changes which have occurred to the stem

since the first call to the function.

7.9 RegStemRead

RegStemRead(filename, stem)

RegStemRead reads the contents of filefilenameinto stem stem using the numeric
index convention (number of lines in the 0 element, data in numbered elements starting
at 1). When possible, it uses memory-mapped I/O to read the values, which should
be the most efficient method possible. As a result, RegStemRead is expected to be
measurably faster than, eg, using linein, as well as being more convenient.

7.10 RegStemWrite 27

7.10 RegStemWrite

RegStemWrite(filename, stem)

RegStemWrite reads the contents of stemstemto file filename. The stem must
follow the numeric index convention. This might be faster than using lineout, and it’s
convenient, but it’s mostly included as a companion to RegStemRead.

7.11 RegStemSearch

RegStemSearch(needle, haystack [, start] [,flags]) -> 0 or index

RegStemSearch searches the stemhaystackfor needle. It returns the index position
of a stem element which matchesneedle, or 0 if there are no such elements. The stem
must follow the numeric index convention.

Start is the starting index position (the default is 1).Flagscan be any combination
of ‘C’, ‘E’, and ‘S’. ‘C’ indicates that the search should be case-sensitive (the default
is case-insensitive). ‘E’ indicates that an exact match is required (the default is to
perform a substring match). ‘S’ indicates that the stem is sorted. When the stem is
sorted, RegStemSearch uses a binary search, otherwise it uses a linear search.

RegStemSearch is primarily a convenience function. In its fastest mode of oper-
ation (performing exact matches on a case-sensitively sorted stem), the overhead of
looking up Rexx variable values makes it slightly slower than the equivalent code writ-
ten in Rexx, and much slower than a more sensible use of stems. What I mean by this
is that this code:

colours.0 = 3
colours.1 = ’blue’
colours.2 = ’green’
colours.3 = ’red’

if regstemsearch(colour, ’colours’,,’ces’) \= 0 then
say colour ’is a colour’

would be more sensible and also much faster as

colours. = 0
x = ’blue’
colours.x = 1
x = ’green’
colours.x = 1
x = ’red’
colours.x = 1

if colours.colour then
say colour ’is a colour’

In its default mode of operation, it can be used along with RegStemRead to replace
SysFileSearch, but again the overhead of setting and retrieving Rexx variables from the
library makes it slower.

28 8 SEMAPHORE ROUTINES

8 Semaphore Routines

A semaphore is an inter-process communications mechanism which allows information
to be signalled between processes. Generally speaking, semaphores are counters which
can be shared between processes, and which allow processes to block while waiting for
the semaphore to reach special values (normally 0 and not-0).

RexxUtil provides two specialised kinds of semaphores: mutual exclusion, or mu-
tex semaphores, and event semaphores.

You use mutex semaphores to cooperatively control access to shared resources. For
instance, if two programs use the same log file to record their progress, they might use
a mutex to ensure that log messages don’t overlap. The routine that writes to the log
would first ‘lock’ the mutex by calling SysRequestMutexSem, then write the log mes-
sage, flush the log file, and finally release the semaphore using SysReleaseMutexSem.

An event semaphore allows a process to wait efficiently until another process lets
it know that there’s something to do. For instance, a server process which accepts
requests in the form of text files could call SysWaitEventSem when it has nothing to do.
A client process which has created input for the server would call SysPulseEventSem
to notify the server that an new file has been written.

There are two kinds of event semaphores. Manual-reset semaphores have their
states changed to ‘posted’ or ‘reset’ and the state stays that way no matter how many
other processes wait for the semaphore. Auto-reset semaphores (the default) automat-
ically change from ‘posted’ to ‘reset’ as soon as a waiting process has been released.
A manual-reset semaphore is a bit like a door which is always either open or shut,
while an auto-reset is like a turnstile that lets one person through, then locks. See
SysPulseEventSem and SysPostEventSem for more details.

8.1 List of Semaphore Routines

SysCloseEventSem (semid)→ 0 or failure: close an event semaphore;

SysCloseMutexSem (semid)→ 0 or failure: close an mutex semaphore;

SysCreateEventSem ([name],[manualreset])→ handle: create an event semaphore;

SysCreateMutexSem ([name])→ handle: create a mutex semaphore;

SysOpenEventSem (name)→ handle: open an event semaphore;

SysOpenMutexSem (name)→ handle: open a mutex semaphore;

SysPostEventSem (semid)→ 0 or failure: set the semaphore status to ‘on’;

SysPulseEventSem (semid)→ 0 or failure: set the semaphore status to ‘on’ then ‘off’ again;

SysReleaseMutexSem (semid)→ 0 or failure: unlock a mutex semaphore;

SysRequestMutexSem (semid, [timeout])→ 0 or failure: lock a mutex semaphore;

SysResetEventSem (semid)→ 0 or failure: set the semaphore status to ‘off’;

SysWaitEventSem (semid, [timeout])→ 0 or failure: wait for an event semaphore to be turned ‘on’.

8.2 SysCloseEventSem 29

8.2 SysCloseEventSem

SysCloseEventSem(semid) -> 0 or failure

Closes the event semaphore associated withsemid. semidmust have been returned
by SysOpenEventSem or SysCreateEventSem. A return code of 0 means success. Any
other return code means ‘not success’.

8.3 SysCloseMutexSem

SysCloseMutexSem(semid) -> 0 or failure

Closes the mutex semaphore associated withsemid. semidmust have been returned
by SysOpenMutexSem or SysCreateMutexSem. A return code of 0 means success.
Any other return code means ‘not success’.

8.4 SysCreateEventSem

SysCreateEventSem([name],[manualreset]) -> handle

Creates a new event semaphore keyed onname. If name is not specified, the
semaphore is private to the process, and so completely useless until Regina supports
multi-threading. Ifmanualresetis set to a non-zero value, it changes the behaviour of
SysPulseEventSem and SysPostEventSem as described later.

On success, SysCreateEventSem returns a handle to the semaphore, which should
be used in subsequent semaphore calls. On failure, it returns the empty string.

8.5 SysCreateMutexSem

SysCreateMutexSem([name]) -> handle

Creates a new mutex semaphore keyed onname. If nameis not specified, the
semaphore is private to the process, and so completely useless until Regina supports
multi-threading. I hope you’re not getting the impression this documentation has been
cut-and-pasted a lot.

On success, SysCreateMutexSem returns a handle to the semaphore, which should
be used in subsequent semaphore calls. On failure, it returns the empty string.

8.6 SysOpenEventSem

SysOpenEventSem(name) -> 0 or handle

Opens an event semaphore keyed onname. The semaphore must have been previ-
ously created (usually by another process) using SysCreateEventSem.

On success, SysOpenEventSem returns a handle to the semaphore, which should
be used in subsequent semaphore calls. On failure, it returns 0. I don’t know why this
is different from SysCreateEventSem.

30 8 SEMAPHORE ROUTINES

8.7 SysOpenMutexSem

SysOpenMutexSem(name) -> 0 or handle

Opens a mutex semaphore keyed onname. The semaphore must have been previ-
ously created (usually by another process) using SysCreateMutexSem.

On success, SysOpenMutexSem returns a handle to the semaphore, which should
be used in subsequent semaphore calls. On failure, it returns 0.

8.8 SysPostEventSem

SysPostEventSem(semid) -> 0 or failure

Sets an event semaphore to ‘posted’ state.
If the semaphore is auto-reset (meaning themanualresetflag wasnotset in SysCre-

ateEventSem), the behaviour is different when there are processes waiting than it is
when there are no processes waiting. If there are waiting processes, they are all re-
leased, and the state of the semaphore is set to ‘reset’. If there are no waiting processes,
the state of the semaphore is set to ‘posted’.

If the semaphore is manual-reset, it stays in ‘posted’ state until it is explicitly reset
using SysPulseEventSem or SysResetEventSem.

8.9 SysPulseEventSem

SysPulseEventSem(semid) -> 0 or failure

Sets an event semaphore to ‘posted’ and then automatically resets it.
If there are no processes waiting on the semaphore, the semaphore is reset without

releasing anything.
Otherwise, if the semaphore is auto-reset, exactly one process will be released be-

fore the semaphore is reset. If the semaphore is manual-reset, all waiting processes will
be released before the semaphore is reset. Hopefully, this table will make the behaviour
clear:

Type Event Waiters Final State Empty State
Auto-reset Pulse Release 1 Reset Reset

Post Release all Reset Posted
Reset None Reset Reset

Manual-reset Pulse Release all Reset Reset
Post Release all Posted Posted
Reset None Reset Reset

8.10 SysReleaseMutexSem

SysReleaseMutexSem(semid) -> 0 or failure

Unlocks a mutex semaphore which was previously locked using SysRequestMu-
texSem.

8.11 SysRequestMutexSem 31

8.11 SysRequestMutexSem

SysRequestMutexSem(semid[, timeout]) -> 0 or failure

Locks a mutex semaphore. If the semaphore is already locked by another process,
waitstimeoutmilliseconds. Iftimeoutis not specified, it will wait until the end of time
(which is currently projected to be in September 2038).

If it returns 0, then the lock was attained. If it returns a non-zero value, then the
lock was not attained, and the shared resource must not be manipulated. The return
value on time-out is supposed to be 121, but this sounds quite improbably to me.

You should always release the mutex by calling SysReleaseMutexSem as soon as
possible after aquiring it.

8.12 SysResetEventSem

SysResetEventSem(semid) -> 0 or failure

Sets an event semaphore to ‘reset’. See SysPulseEventSem and SysPostEventSem
for more discussion.

8.13 SysWaitEventSem

SysWaitEventSem(semid[,timeout]) -> 0 or failure

Waits for an event semaphore to be set to ‘posted’. Iftimeoutis specified, SysWait-
EventSem waits up totimeoutmilliseconds. Otherwise, it waits forever.

If the semaphore is auto-reset and its state is ‘posted’ before the call to SysWait-
EventSem, the state will be changed to ‘reset’.

SysWaitEventSem returns 0 when it is returning due to the semaphore being posted.
It’s supposed to return 121, if you can believe it, if the function timed out. Other non-
zero return codes can’t be good.

9 Character Set Conversion

The character set conversion routines convert the representation of data. Specifically,
they convert the representation of strings between Unicode and various other character
sets, and they convert files between an encrypted and unencrypted form (although this
functionality is not implemented).

There are effectively three kinds of character set conversion provided: between
Unicode and ‘the default’ character set, between Unicode and a ‘named’ character set,
and between different Unicode representations. Since most of the translation is done
by system-supplied services, the conversions are to some extent system-dependent.

On Windows systems, character sets are ‘named’ using code page numbers. There
are two default character sets –the ‘Windows’ character set which is often and surpris-
ingly referred to as the ‘ANSI’ character set, and the ‘DOS’ character set, which is
often and surprisingly referred to as the OEM character set. Stock North American

32 9 CHARACTER SET CONVERSION

installations of Windows usually set the Windows character set to 1252 and the DOS
character set to 437. The effect of this is that DOS applications which use line-drawing
characters work correctly, and any attempt to share data using accented characters be-
tween a DOS and a Windows application will not work. This problem can be fixed by
setting the OEMCP value (somewhere in the system registry) to the same value as the
ACP.

On Unix systems, character sets are typically given names, although these some-
times amount to little more than a number with some text to indicate where the number
comes from. Unfortunately, there is no standardisation between the different names.
The approach taken here is:

• if the system supports the functions mbsrtowcs() and wcsrtombs(), they are used
to perform the default code page conversion, which should be controlled by the
locale settings LC_ALL or LC_CTYPE. Otherwise, the default character set is
assumed to be ISO 8859-1 and the conversion is performed by the RegUtil code;

• if the system supports iconv(), conversions between Unicode and named char-
acter sets is performed using this function. The character set names are system-
dependent;

• regardless, conversion between UTF-7, UTF-8, and Unicode (UTF-16) are per-
formed by the RegUtil code.

I’m calling encryption a form of character set conversion because the encryption
here seems to be parameterless. In any case, I have not yet implemented, and may
not implement the encryption functions, although stubs are included to allow some
portability with Object Rexx. My concern is that any encryption using the specified
interface will necessarily be trivial, and will come at the risk of damaging the original
file.

9.1 List of Character Set Conversion Functions

SysToUnicode (string, [codepage], [mappingflags], outstem)→ 0 or failure;

SysFromUnicode (string, [codepage], [mappingflags], [defaultchar], outstem)→ 0 or failure;

SysWinEncryptFile (filename)→ 82;

SysWinDecryptFile (filename)→ 82.

9.2 SysToUnicode

SysToUnicode(string, [codepage], [mappingflags], outstem)
-> 0 or failure

Convertsstring to the Unicode UCS-16 representation and places the result inout-
stem.!TEXT.

Codepageis one of ‘acp’, ‘oemcp’, ‘mac’, ‘utf7’, ‘utf8’, or a system-dependent
character set identifier. Acp and oemcp are the default character sets mentioned above;

9.3 SysFromUnicode 33

mac is the MacIntosh character set; and utf7 and utf8 are alternative Unicode represen-
tations.

Mappingflagscan be any space-delimited combination of ‘precomposed’, ‘com-
posite’, ‘err_invalid_chars’, and ‘useglyphchars’. These flags have no effect on Unix.
On NT, ‘err_invalid_chars’ means that an error should be returned if the input string
contains characters which cannot be converted, ‘precomposed’ means that accented
characters should be represented as accented characters (e.g., é translates to é), ‘com-
posite’ means that accented characters should be represented as separate accent and
base characters (é translates to ´e), and I’m not sure what ‘useglyphchars’ means.

The function returns 0 on success, 87 ifcodepageis invalid, 1004 ifmappingflags
is invalid, or 1113 if there was a translation error.

9.3 SysFromUnicode

SysFromUnicode(string, [codepage], [mappingflags], [defaultchar],
outstem) -> 0 or failure

Convertsstring from the Unicode UCS-16 representation and places the result in
outstem.!TEXT.

Codepageis one of ‘acp’, ‘oemcp’, ‘mac’, ‘utf7’, ‘utf8’, or a system-dependent
character set identifier. Acp and oemcp are the default character sets mentioned above;
mac is the MacIntosh character set; and utf7 and utf8 are alternative Unicode represen-
tations.

Mappingflagscan be any space-delimited combination of ‘compositecheck’ and
‘sepchars’, ‘discardns’, or ‘defaultchar’. These flags have no effect on Unix. On NT,
they determine the behaviour when characters of the form ´e are encountered. With
‘compositecheck’, such combinations are converted to a single character (é). The other
flags determine how combinations which cannot be converted to a single character are
handled. With ‘sepchars’, the default, each character is converted literally to the target
character set. With ‘discardns’, the accent character is discarded. With ‘defaultchar’,
the combination is converted to the default character.

defaultcharis used if there is no representation for a Unicode character in the target
character set. If it is not specified, a system default value is used. If thedefaultcharis
used, the value of the default character is written tooutstem.!USEDDEFAULTCHAR.

The function returns 0 on success, 87 ifcodepageis invalid, 1004 ifmappingflags
is invalid, or 1113 if there was a translation error.

9.4 SysWinEncryptFile

SysWinEncryptFile(filename) -> 82

Encrypts the filefilenameusing some system-dependent encryption algorithm. This
is not likely to be strong encryption, and it may be possible to decrypt only from the
user id which performed the encryption. You are almost certainly better off using file
permissions to prevent unauthorised access to files and a proper encryption program to
protect data from people who can circumvent system security. Note that this function
is not implemented.

34 9 CHARACTER SET CONVERSION

9.5 SysWinDecryptFile

SysWinDecryptFile(filename) -> 82

Decrypts a filefilenamewhich was previous encrypted using SysWinEncryptFile().
The file must have been encrypted on the system performing the decryption, and might
also need to have been encrypted by the same user. Note that this function is not
implemented.

Index
compatibility, 1, 9–11, 13, 15–17, 19,

21, 22, 25
compiling, 2
completeness, 1, 9, 12, 15–18, 22, 33,

34

IBM, 1, 7, 9, 10, 14, 22

numeric index convention, 14, 23

RegStemDoOver, 26
RegStemRead, 24, 26, 27
RegStemSearch, 27
RegStemWrite, 24, 27
return codes, 9, 19
Rexx/IMC, 1
Rexx/TK, 20
RxCurses, 20, 21
RxFuncAdd, 5
RxMessageBox, 23

SysAddRexxMacro, 19, 20
SysBootDrive, 14
SysClearRexxMacroSpace, 19
SysCloseEventSem, 29
SysCloseMutexSem, 29
SysCls, 21
SysCopyObject, 8
SysCreateEventSem, 29, 30
SysCreateMutexSem, 29, 30
SysCreateShadow, 9
SysCurPos, 21
SysCurState, 21
SysDriveInfo, 15
SysDriveMap, 15
SysDropFuncs, 7, 21
SysDropRexxMacro, 19
SysDumpVariables, 24
SysFileDelete, 8, 9, 11
SysFileSearch, 8, 9
SysFileSystemType, 9
SysFileTree, 8, 10
sysfromunicode, 33

SysGetErrorText, 16
SysGetFileDateTime, 12
SysGetKey, 21, 22
SysIni, 13
SysLinVer, 14
SysLoadFuncs, 5, 7, 8, 21, 24
SysLoadRexxMacroSpace, 19, 20
SysMkDir, 8, 11
SysMoveObject, 11
SysOpenEventSem, 29
SysOpenMutexSem, 29
SysOS2Ver, 14
SysPulseEventSem, 28, 30
SysQueryProcess, 16
SysQueryRexxMacro, 19
SysReleaseMutexSem, 28, 30, 31
SysReorderRexxMacro, 20
SysRequestMutexSem, 28, 30, 31
SysResetEventSem, 30, 31
SysRmDir, 11
SysSaveRexxMacroSpace, 19, 20
SysSearchPath, 11
SysSetFileDateTime, 12
SysSetPriority, 16
SysSleep, 17
SysStemCopy, 25
SysStemDelete, 25
SysStemInsert, 25
SysStemSort, 24, 25
SysSwitchSession, 17
SysSystemDirectory, 17
SysTempFileName, 8, 12
SysTextScreenRead, 22
SysTextScreenSize, 21, 22
systounicode, 32
SysUtilVersion, 15
SysVersion, 14
SysVolumeLabel, 17
SysWaitEventSem, 28
syswindecryptfile, 34
syswinencryptfile, 33
SysWinVer, 14

35

36 INDEX

W32 Funcs, 9, 13
windows

registry, 13
short-cut, 9

	Introduction
	Installation
	Win32
	Unix
	Notes on Compiling

	Reporting Bugs
	Using RxFuncAdd
	Licencing

	Housekeeping Routines
	SysLoadFuncs
	SysDropFuncs

	File System Routines
	List of File System Routines
	Example
	SysCopyObject
	SysCreateShadow
	SysFileDelete
	SysFileSearch
	SysFileSystemType
	SysFileTree
	SysMkDir
	SysMoveObject
	SysRmDir
	SysSearchPath
	SysTempFileName
	SysGetFileDateTime
	SysSetFileDateTime

	System Routines
	List of System Routines
	SysIni
	SysBootDrive
	SysWinVer
	SysOS2Ver
	SysLinVer
	SysVersion
	SysUtilVersion
	SysDriveInfo
	SysDriveMap
	SysGetErrorText
	SysSetPriority
	SysQueryProcess
	SysSleep
	SysSwitchSession
	SysSystemDirectory
	SysVolumeLabel
	SysWaitNamedPipe

	Macro-Space Manipulation Routines
	List of Macro-Space Manipulation Routines
	SysAddRexxMacro
	SysClearRexxMacroSpace
	SysDropRexxMacro
	SysLoadRexxMacroSpace
	SysQueryRexxMacro
	SysReorderRexxMacro
	SysSaveRexxMacroSpace

	Console I/O Routines
	List of Console I/O Routines
	Example
	SysCls
	SysCurPos
	SysCurState
	SysGetKey
	SysTextScreenRead
	SysTextScreenSize
	RxMessageBox

	Stem Manipulation Routines
	List of Stem Manipulation Routines
	Example
	SysDumpVariables
	SysStemCopy
	SysStemDelete
	SysStemInsert
	SysStemSort
	RegStemDoOver
	RegStemRead
	RegStemWrite
	RegStemSearch

	Semaphore Routines
	List of Semaphore Routines
	SysCloseEventSem
	SysCloseMutexSem
	SysCreateEventSem
	SysCreateMutexSem
	SysOpenEventSem
	SysOpenMutexSem
	SysPostEventSem
	SysPulseEventSem
	SysReleaseMutexSem
	SysRequestMutexSem
	SysResetEventSem
	SysWaitEventSem

	Character Set Conversion
	List of Character Set Conversion Functions
	SysToUnicode
	SysFromUnicode
	SysWinEncryptFile
	SysWinDecryptFile

	Index

