The Regina Rexx Interpreter

Version 3.3

Anders Christensen

<Anders.Christensen@idi.ntnu.no>
Norwegian Institute of Technology
University of Trondheim

April 25, 2004

Additions and corrections by Mark Hesslinlessling@qut.edu.&u

Regina Home Page d#tttp:/regina-rexx.sourceforge.net

mailto:M.Hessling@qut.edu.au
http://regina-rexx.sourceforge.net/

Copyright © 1992-1998 Anders Christensen
Copyright © 1998-2004 Mark Hessling

Permission is granted to copy, distribute and/or modify this document under the term&ifthe
Free Documentation License, Version 1.1 or any later version published by the FreeeSoftwa
Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts

A copy of the license is included in the section entitled "GNU Free Documentatemsklc

Table of Contents

LINtrOdUCTION T0 REGINA......ciiiiiiiiiiiieit ettt e e e e e e e e e e e e e e s e s s bbb bbb bbb e st e e e et e e e eaaeeeeeeesesnaannnnas 10
1.1PUrpose Of thiS AOCUMENL.........couiiii e e e e e et e e e e e et e e e e eenne 10
A [] 0] (=T 0 g =T 0 = £ o RSP 10
ST =T ¢ K30) B m=To |1 = VPP 11
1.4Executing Rexx programs With REQINA...........ccouuiiiiiiii e eanes 11

I T (o =S USSP 12
1.4.2EXtErnal REXX PrOQIaMS. .. .ccuuuuuieeieieiiiieeeseetia e e e e e ettt s e e e e e eata e e e e s eata e e e eaeeasa e eeeeeessnaeeeees 13

2REXX LANQUAGE CONSIIUCTS. ...ttt e e e e e et ettt e e e e e e e s e e e e e e e e e e e e e eeeeeennennnnnes 15
pZ0 N D 1= 1 111 PSPPI 15
2.2NUI CIAUSES. ... ettt et e e e e e e e e e e et e e e e e e et e e e e e eessa e e eeeeesaa e eeeeesannnns 16
PG 1 @] 1 11 0= 10T PSP 17

2.3 L. LASSIONMIENTS. ...ttt ettt et ettt e e e e e e e e e e e e e e e e e e a bbb e et et ettt et e e e e aeeeeeas 17
FZA | 11 10 Tox (o] 1SS 19
2.4.1The ADDRESS INSIIUCHION.uuiiiiii et e e e e e e e e e e e e e e e e eara e e 21
2.4.2The ARG INSITUCHION. ... ittt e e e e et e e e e e et e e e e e eaan e e e e e eeaaaans 27
2.4.3The CALL INSIIUCHION. ... ittt et e e e e e s e e e e e e st e e e e e eaaa e e eaaeens 28
2.4.4The DO/END INSIIUCTION.iiiii it e et e et e e e e e e e e e e e e eas e e e e e esaaneeeaeenes 31
2.4.5The DROP INSIIUCHION.cciiiiiiie e e e e e e e et e e e e e e aa e e e e earaaneeees 34
2.4.6The EXIT INSIIUCTION. .. .cciitiiieeii et e e e e e e e e e e e e e e e aaaaneaeaaenes 36
2.4.7The IF/THEN/ELSE INSTIUCHION.uiiiiieiiiii e e e e e e e e e e e e e eaes 37
2.4.8The INTERPRET INSITUCHION.ciiiiiiii et s e e e e e e e e e e er e e eeeeaes 37
2.4.9The ITERATE INSIIUCHION.uii it e e e e e s e e e e e e b e e e e e eeaaaeeeeeeens 39
2.4.10The LEAVE INSITUCHION.uuiiiiiii e e et e e e e e et e e e e e e e s e e e e e eaaaaaeeees 40
2.4.11THe NOP INSIIUCHION.ciiti e e e e e et e e e e e e s e e e e e esaaa e eeeas 40
2.4.12The NUMERIC INSIIUCHION.......uiiiiiii e e e e e e e et e e e e e e aa e e e e e eenaanns 40
2.4.13The OPTIONS INSIFUCHION.......iiiiiieiiiee e e e e e e et e e e e e r it e e e aeeaae 42
2.4.14The PARSE INSIIUCHION.......ciiii it e e e e e e e e e e e 43
2.4.15The PROCEDURE INSIIUCHION......cccuuiiiiiiiie e e e e e e eara e 45
2.4.16The PULL INSTIUCTION. .. .ccuii ittt e e e e e e et e e e e e e et e e e e eeaaen 48
2.4.17The PUSH INSITUCHION. ...ttt e e e e e e et e e e e e et e e e e e e aaaaaeeees 49
2.4.18The QUEUE INSIIUCHION........iiiiiieiiii e e e e et e e e e et e e e et eeraa e eeaanns 49
2.4.19The RETURN INSTIUCHION.....ccouiiiiiiii et e e e et e e e e e e e s e e e e eeene 49
2.4.20THe SAY INSIIUCTION. .. .coiii e e e e e e e e e e e e e e e e eataa e eeas 50
2.4.21The SELECT/WHEN/OTHERWISE INStruCtioN...........cccccvvevuiiieeeeeeiiieeeeeeeeeiennnnns 51
2.4.22The SIGNAL INSIUCTION.cctiii i e e e e e s e e e e e et e e e e e e eaaaaeeeeeeens 52
2.4.23The TRACE INSIFUCHION.......iiiiieeiii e e e e e e e e e e e e e e e e e e eaaa s 54
2.4.24The UPPER INSIIUCHION.ccui it e et e e e e et e e e e e e e s e e e e e e enaaanns 56
A1 @ 01T = o] = T PPN 56
2.5, 1AMNMETIC OPEIALOIS. ... ciiiii e ee ettt e e e e e e e e e e e e e et e e e e e eesaa e e e e e ennaanas 57
2.5.2ASSIgNMENT OPEIALOIS. ...uu i iiiite ettt e e e e e e et e e e e e et e e e e e e st e e e e e eeaa e e eeeeannanas 57
2.5.3C0MPAratiVE OPEIALOIS. ittt et e et e et e e e e e et e e e e e et e e e e e eaaa e e e e eaaaa 57
2.5.4C0oNCAtENALION OPEIALOIS.cuuuiiiiii ettt e e e e e e e et e e e e e et eeeeeaaraaes 58
ST Moo [[or= U @ 01T = 1] £ RSP USPPPPIN 58
2.6Implementation-SPecific INFOIMALION.uuuiiiiiiiiii e 58
A ST Y/ ESYod =Y | =T =T 11 L 58
2.6.2Implementation of the ADDRESS €NVIrONMENT..........uuuuiiiiiiiiiiiiiiiiiiiieeeeeeeee e e e e e e s 59
2.6.3Regina RESIICIEA MOGE........ oot 61
2.6.ANAtIVE LANQUAGE SUPPOI. ...ttt e e e e e e e e e e e e e e e e e s e e eenebereeees 62
SREXX BUIIt-IN FUNCLONS......cuiiiciiii et e e e e e et e e e e e e et e e e e eeetaa e e eeeerssanaeeeeennes 65

SRR T l=1e: LM [a] (o]0 anT=11To] o FEUT TR 65

3.1.1THE SYNAX FOMMIAL... .ottt e e e e e e e e e e 65
3.1.2Precision and NOrMAliZAtION.........ccoiieeiiiie e e e e e e e e e e e e e e eeeas 66
3.1.3Standard Parameter NAIMES.uuiiiiiieiiie e ee e e e e e e e e e e et e e eeeaaaaara i aa s s e eaeeeeaeeeeeeeeeessnnnnns 66
I B (o] AV [T ST: (o [PP PP P PP RRPPPPPPP 67
3.1.5P0ssible System DEPENUENCIES.ccovuiiiiiiiiiae et eaeeeas 67
3.L.6BIANKS VS. SPACES.....ceiiiiiitiiiiiiias e ettt e ettt et e e e e e e e e e e e s s s e s s bbb bbbt r et e e e e e e e e e e aaaaens 69
3.2Regina BUilt-IN FUNCLIONS....... oot e e e e e e e e et e e e e e aaaanas 69
ABBREV(long, short [,length]) - (ANSI)......coooiiiii e 70
ABS(NUMDBET) = (ANSI) e e e e e e e et e e e e e aaa s 70
ADDRESS() = (ANSI) ittt e e 70
ARG([argno [,optioN]]) = (ANSI).....u e 70
B2C(DINSNG) - (AREXX) ..ttt e et e e e et e e e e e e e et e e e e a s 71
B2X(DINSIING) = (ANSI) ...t r e e e e e e e e e e e e e e e e e e e aaas 72
BEEP((frequency [,duration]) = (OS/2).....cuuuiiiiiiiii ettt 72
BITAND(stringl [,[string2] [,padchar]]) - (ANSI).....coooiiieiiiiiiie e 72
BITCHG(StriNgG, DIt) - (AREXX)...ci ittt a e e e e e e e e e 72
BITCLR(sString, Dit) - (AREXX)....uuuuuiiiiiii ettt 73
BITCOMP(stringl, string2, bit [,pad]) - (AREXX).....uuuuuiiiiiiiieeeeeeeeeeeeeeeeeeeeee 73
BITOR(stringl [, [string2] [,padchar]]) - (ANSI).....cccoiiiiiiiii e 73
BITSET(sString, Dit) - (AREXX)... i ittt e e e e e e e 73
BITTST(sString, Dit) - (AREXX)..c et aaneaees 74
BITXOR(stringl][, [string2] [,padchar]]) - (ANSD.......coiiiiiiiiiiii s eeeeme e 74
BUFTYPE() - (CMS). .ttt e e e et et et bbb e e e e e e e e e e eeees 74
C2B(StNG) = (AREXX) .. iiiiiiet ittt ettt e e e e e e e e e et e e e e e eat e aaaann 74
C2D(string [,Iength]) - (ANSI)....c oo 74
C2X(STING) = (ANSI). .ttt et e e e e e e e e e e e e e e e e e e e b eene e 75
CD(Irectory) - (REGINA).....coeiiiiiee ettt e e e e e e e e e ee s 75
CHDIR(Irectory) - (REGINA). ettt e e e e e e e e e s 75
CENTER(string, length [, padchar]) - (ANSI).....coooiiiiiiii e 76
CENTRE(string, length [, padchar]) - (ANSI).....coooiiiiiii e 76
CHANGESTR(needle, haystack, newneedle) - (ANSI).....c.coiviiiiiiiiiiiii e 76
CHARIN([streamid] [,[start] [,length]]) - (ANSI)......cccuiiiiiiiiimm e 76
CHAROUT([streamid] [,[string] [,start]]) - (ANSD.......cccomriimremrieei e, 77
CHARS([streamid]) = (ANSI).....cuuiiiiiii e e e e e e e aaa s 78
CLOSE(fIl) = (AREXX). . ittt ettt ettt e e e e e e e e e e e e e e et bbb b e e e e e e e e eeaeaeas 78
COMPARE(stringl, string2 [,padchar]) - (ANSI......coiiiiiiiiiii e 78
COMPRESS(string [,liSt]) - (AREXX)....uuuuuiiieiie et 79
CONDITION([OPHION]) = (ANSI).... ittt e e e e e e e e e e e e e e e e 79
COPIES(String, COPIES) = (ANSI)....uuuiieiiei ettt 79
COUNTSTR(needle, haystack) = (ANSI).... oot 79
CRYPT(string, Salt) - (REGINA)......uuutiieiieiit ittt eee e 80
DATATYPE(string [,option]) - (ANSI)...coio it 80
DATE([option_out [,date [,option_in]]]) - (ANSI).....coomiiiiii e 81
DELSTR(string, start [,length]) - (ANSI).......ooimiiii e 83
DELWORD(string,start[,length]) (ANSI).......ccoouiiiii e 83
DESBUFR() = (CMS).. ittt e e e ettt e ettt bbb r e e e e e e e e e e e e e eeeeeeesennnes 84
DIGITS() = (ANSI) ..ottt e e e e e e e e e e e e e e et eeetebanaa s 84
DIRECTORY/([new direCtory]) = (OS/2)....ccuui it 84
D2C(integer [,Iength]) - (ANSI)....ooiiiiiiiiii e 84
D2X(integer [,Iength]) = (ANSI).... .. 85

DROPBUF([NUMDBEI]) = (CIMS)...ceiiiiiiiiie ettt e e et e e e e et 85

L@ (11 I (= O T 86
ERRORTEXT(errno [, 1ang]) - (ANSI)....oo e 86
EXISTS(filename) - (AREXX)....oiiiii oottt e e e e e e e e e e eeee e 87
EXPORT(address, [string], [length] [,pad]) - (AREXX)......ccceeiiiiiiiiiiiiinieeeeeeeeeeeeee 87
FILESPEC(0option, fIlESPEC) = (OS/2)...uuuuuiiiiiiiiiiiiiiiiiiieie e 87
FIND(String, PRrase) - (CIMS)......uuiiiiiieie ettt e e 88
FORKU() = (REGINA) . ..ottt et e e e e e e e e e e e s s bbbt st e e e e e e aaaeaeeeaaeeessaaannnes 88
FORMU() = (ANSI) ettt e ettt et e e e e e e e e e e e e e e e s s st bb s e e e e e e eeeeeaaeaeeeaeeassssnnnnnns 88
FORMAT (number [,[before] [,[after] [,[expp] [,[eXpt]]]]]) - (ANSD...ccceevvriiiiinieennn, 88
FREESPACE(address, length) - (AREXX)......uiiiiiiiiiiiiiiiieieie et ceenmmmme e eeaenns 89
FUZZ() = (ANSI). .ttt ettt e e e e e e e e e e e e e e easaannssbbbbbeneeeeeees 90
GETENV(environmentvar) - (REGINA).... ..o 90
GETPID() - (REGINA)....ce ettt ettt s eaaessannnnaeeeeeas 90
GETSPACE((ength) - (AREXX)....uuuuiiieieieiiiiieeee ettt se e ee et ss e e e e e e e e eeeeeaaasnannna s e e e e e eaeeeeeeees 90
GETTID() = (REGINA). ...ttt ettt ettt s et e e e e e e e et e e e e e s s e e e e e e e e e eeeaeeeeeeeseannnnnnnes 90
HASH(SENG) = (AREXX) ittt ettt e e e e e e e e e s e e e 91
IMPORT (address [,length]) - (AREXX)......cciiiiiiiiiiiiiiiiiiiiiieee ettt 91
INDEX(haystack, needle [,start]) - (CMS)......coooiiiiiiiiiiieee e 91
INSERT(stringl, string2 [,position [,length [,padchar]]]) - (ANSD........ccceeeemiennnenn.n. 91
JUSTIFY(string, length [,pad]) - (CIMS)........oiiiiiiiei e 92
LASTPOS(needle, haystack [,start]) - (ANSI........ooiiiiiiii e 92
LEFT(string, length [,padchar]) - (ANSI).....coouiiiii e 92
LENGTH(SIING) = (ANSI)..coiiiiiiiiiiiiiei et r e e e e e e e e eeeaaaaaesaaaans 92
LINEIN([streamid][,[line][,count]]) (ANSI.....c..oiiiiiiiiieii e e 93
LINEOUT ([streamid] [,[string] [,IiN€]]) - (ANSI).....ccoiiiiiiiiiiii e 94
LINES([streamid] [,OptioNn]) = (ANSI)....coiiiiiiiiiiiiee e 94
LOWER(SENNG) = (REGINA)....ceeeeeitiiiiiee e e e e e e e e e e e e e e e 95
YN = = U) T (17) TS 95
MAX(numberl [,numDBer2] ...) = (ANSI).. .. 96
MIN(number [,number] ...) - (ANSI)...coo i 96
OPEN(file, filename, ['Append’|'Read’|'Write"]) - (AREXX).....covviiiiiiiiiiiiiiiiiiiiinennnn 96......
OVERLAY(stringl, string2 [,[start] [,[length] [,padchar]]]) - (ANSD.........cccoeeverrnnnnn. 97
POOLID() - (REGINA)... ittt ettt e e e e e e e e e e e e s s s s s s s s bbbt b s e e e e ereeeeaeaaaaaaeaaaassnnans 97
POPEN(command [,stem.]) - (REGINA)........ooiiiie e 97
POS(needle, haystack [,Start]) - (ANSI).....cccuuiiiii e 98
QUALIFY ([streamid]) = (ANSI) .. ooiie e e e e e s eeeeeaeeaeaeas 98
QUEUEDN() = (ANSI) .. eeieieties ettt s e e e e e e e e e e e e et e e e ae e aaaa s aaaeeeeaeeeaneeeeeeennnnnnnnns 98
RANDOM(MAX) = (ANSI). et eeieeeie et e et e e e e e et e e e a e e e e e e eeeeaeaeeeeeenssssnnnnns 98
RANDOM([min] [,[max] [,seed]]) - (ANSI)...cccoriiiieiiiiiie e 98....
RANDU([SEEA]) = (AREXX)..iietuuiiiiiiiiee e e oottt ettt ss s s e e e e e e e e e e e e e e eeeeeaassnnnaa e s e eeaeeeaaeeeeees 99
READCH(file, 1ength) - (AREXX)....uuttitiiiiiee ettt e e 99
READLN(II€) = (AREXX) ...ttt teeieitiie e e eeeetiie s e e e e eeeateataans s s s s s e e e e e e e e e s e eeeesesssnnnnnnaseaeaeeeeees 100
REVERSE(SIING) = (ANSI) ...ttt ettt e e e e e e e e e e e e e e e s e n e e e eeees 100
RIGHT(string, length[,padchar]) - (ANSI).......cooiiiiii e 100
RXFUNCADD(externalname, library, internalname) - (SAA).....c.cooiviiiiiiiiiiieeeceiiiee e 100
RXFUNCDROP(externalname) - (SAA). ...t e e e e e aeees 101
RXFUNCERRMSG() - (REGINA). ...ttt e e e e e e e e e e e e e e s s snnanneneenees 101
RXFUNCQUERY (externalname) = (SAA). .. oottt e et a et eeaeeanes 101
RXQUEUE(command [,queueltimeout]) - (OS/2).......couuuuuuuuimiiiiiinieeeeeeeee e 101
SEEK(file, offset, [Begin'|'Current’|End’) - (AREXX)......cooiiicoiree e, 102

5

SHOW(option, [name], [pad]) - (AREXX).. oo 102

SIGN(NUMDBDET) = (ANSI) ..ttt e e e e e e e e e e aeeaeaaeaeaaanns 102
SLEEP(SECONAS) = (CMS).. ittt ettt e e e e e e e e e e e e e e en e 103
SOURCELINE([lIN€NO]) = (ANSI)...ceeitiieee ettt e e e e e e e e e e e e e e as 103
SPACE(string], [length] [,padchar]]) - (ANSI).....ccooiiiiii e 103
STATE(Streamid) - (CIMS)... .ottt 104
STORAGE([address], [string], [length], [pad]) - (AREXX).......uuuriiiiiiiiiiiiiiiiiiiiiins 104
STREAM(streamid[,option[,command]]) (ANSI).......c.coiiiiiiiiiiiii e 104
STRIP(string [,[option] [,char]]) - (ANSI)......coiiii e 108
SUBSTR(string, start [,[length] [,padchar]]) - (ANSD........cooiiiiiceeee e, 109
SUBWORD(string, start [,length]) - (ANSD.......cooiiiiiiii e, 109
SYMBOL(NAME) = (ANSI) . .eettitiiieieiee et r e et e e e e e e e e e e e e e e s s s aannnnnrbereeeees 109
TIME([option_out [,time [option_in]]]) - (ANSI)......ccooiiiiiii e, 110
TRACE([SEttING]) = (ANSI)....uuiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e s e s e annnes 111
TRANSLATE(string [,[tableout] [,[tablein] [,padchar]]]) - (ANSI)...........ovvivrrviiiirennen. 111
TRIM(SIING) = (AREXX) . eettiieiee i e e ettt ss s s e e e e e e e e e et e e e e eeeaaeasaa s e aeeaeeeeaeeeeeeeesnnnnnns 112
TRUNC(number [LIength]) = (ANSI).....uuuiiiiiiiiiiiiee e 112
UNAME([0ption]) = (REGINA). ... ittt s s e e e e e e e e e e e e e e eeeeaennnna e eeeas 112
UNIXERROR(Errorn0) - (REGINA)......uuuiiieee et e s 113
UPPER(string) — (AREXX/REGINA).....cci ittt e e e e e e e e e 113
USERID() = (REGINA)....cettttitiiieis ettt e e e e e e e aaaaaeaaeesessasannnnnensneneees 114
VALUE(symbol [,[value], [POOI]]) - (ANSI)....ccoiiiiiiie e 114
VERIFY(string, ref [,Joption] [,start]]) - (ANSD....cccoiiiiiiiiiiii e 115..
WORD(String, WOrdno) = (ANSI) ... i e e e e 115
WORDINDEX(string, wordno) = (ANSI).....ccouuiiiiie e 115
WORDLENGTH(string, wordno) - (ANSI).....ccooiiiiiiiieee e 116
WORDPOS(phrase, string [,start]) - (ANSI)......coooiiiimiiiiiiii e 116
WORDS(SINNG) = (ANSI). ..t r e e e e e e e e e eaeeas 116
WRITECH(file, String) = (AREXX)....ceiiiiiiiie e e e e ettt s s s s e e e e e e e e e e eeeaeeesssnnnnes 116
WRITELN(file, String) = (AREXX)....cceiieiiiie e eiiieies e ee e e e eeeeeeeaaasss s s e e e e e e e e e eeeeeeeeenne 117
XRANGE([Start] [,end]) = (ANSI).....uuiiiiiiiae e e e e e e e e e 117
X2B(NeXSLING) = (ANSI) . eui i e e e e e e e et e e e e e e aba e e eeeeanes 117
X2C(NeXSLING) = (ANSI)...ou e e e e e e e e et 117
X2D(hexstring [,Iength]) - (ANSI)....couuii e 118
3.3Implementation specific documentation for RegiNa..............ccovieiiiiiiiiiiiiiie e 119
3.3.1Deviations from the Standard.............ooooiiiiiiiiiiii e 119
3.3.2Interpreter Internal Debugging FUNCLIONS............oiiiiiiiiii e 119
ALLOCATED([OPLION]). et ieiiiiiiiiieit ettt e e e e e e e st e e e e e e e e e aaaeeeaeeaesaaans 119
18V =t P 120
DUMPY AR S () et tttttttat ettt ettt et e e e et e ettt s s s s e e e e e e e aeeaeeeeeeessssssnnnn i aaaaaeaeaeaeaeeeeeennsnnnnnnns 120
[RS I I Y = T 120
B I YN O =12 @ (R 120
3.3.3REXX VMS INterface FUNCHONS.........iiiiiiiiiiee e e e e e e e e e e e e e e e eeeeeeenennnns 121
o] [0 1 (o] o 1S TP TTTSTTSR 124
4. IWhat Qre CONAILIONS.ttt e e e e e e ettt e e aa b s bbb a e s e e e e e e e aaaeeeeeeeessennnnes 124
4.2What Do We Need ConditioNS fOr?........uuuiiiiiiiiii e s 124
Ve B =T 1 0T o] (o0 Y2 PP PR 124
4.4The Mythical Standard CONGItION.cccoiiiiiiiii e e 125
4.4.1Information Regarding Conditions (data StruCtUresS)...........ccuviieieiieiiiiiiieeeeeeiiiee e 125
4.4.2HOW t0 Set UP @ CONAITION TIaP..uuuuuuuiiie ettt e e e e e e e e e aeeeeas 126
VAR e] o (o)V (o B o= 1T K= @0 o 1110] o TR 127

4.4.4How to Trigger @ COoNAItION Trap.....cuuuiiieieieiiiie e e e e e et e e e eaa s 129

4.4.5Trapping by Method SIGNAL.......cooiiii e e e e e e e e e e e 129
4.4.6Trapping DY Method CALL.........euiiiiiiiiiiee e e e e e e e e e e e e e e e 130
4.4.7The Current Trapped CONAITION.........uuuueuiiir e e e e e e e 131
R I = L= = L @ T 111 USSR 132
4.5.1The SYNTAX CONAITION.cieieiiiiiieeee et e ettt e e e e e e e e e e e e e e e e aae e e e e e e eeeeeeaaeeeeees 132
4.5.2ThE HALT CONAITION. .. .ciiieeiiiiee e e e ettt e s s e e e e e e e e et e e e e eee et a s e e eeeeeeaeeeeeeeennnnnnnes 132
4.5.3The ERROR CONAIION. ...ttt e e e e e e e e e e e bbb as 133
4.5.4The FAILURE CONGITION.... .ottt e e e e e e e e e e e 133
4.5.5The NOVALUE CONILION......ciiiiiiiiieiiiii ettt e e e e e eees 134
4.5.6The NOTREADY CONAITION. .. ittt ittt e e e e e e e e e e eee e e s 134
4.5.7The LOSTDIGITS CONAILION.....ciiiiiiiiieieeieei ittt e e e e e e e e e e e e e e e e s s eeeeeees 135
4.6Further NOteS 0N CONAITIONS.couuuiiei ettt e e et a e e e e e e e e aaeeeeeennenes 135
4.6.1Conditions under Language LeVel 3.50.........uuuuiiiiiiieeeeie et 135
4.6.2Pitfalls when Using ConditioN TrapS.........ccuueuiuiiruumiiiiiiiirieseeeeeeeeeeeeee e e e e e e e e e s eanans 136
4.6.3The Correctness of thiS DeSCIIPLION...........uuiuiuiiiiiiiiiiiiii it 136
A 0te] aTo [11[e] g ST oI S {=To || o - VPR PPPPPPPRIN 137
4.7.1How to Raise the HALT CONAItION..........uuiiiiiiieiiiie e e e e e e e e e e e e e eeeeeeenennees 137
4.8P0SSIDIE FULUIE® EXIENSIONS.cciiiieeiiiieitiieee e e e e e e e e e e e e ettt e eee et s s e e e e e e e e e e eeeeeeeeesesssnnnnaaaaeeeeas 137
5Stream INPUL @Nd OULPUL......coeiiiiii e e e e e e e e e et e e e e e e s e e e e e eeaaaaeeees 140
5.1Background and HistoriCal REMAIKS..........coiiiiiiiiiiie e 140
5.2REXX'S NOLION Of @ SIrEAIM......uiiiiiiiiiiiiie e 140
5.3S 0N CrasSh-COUISE.uuiiei ittt e e e e e e e e e e e e e et eaeeet bbb e e e e e e eeeeaas 141
R NP T a1 0T IS == 0 1 RSP RUPPPRPPN 142
5.5Persistent and TranSIENt SIFEAIMS.u it a e e e e e e e eeees 144
5.60PENING B SEIEAMN.....uuiiiiiiiiiiiiee ettt e e e e e e e e e e e e e s s e bbb bbbttt et e ettt e e e e aaeeeeaeeseasaaannnnbbbbbbbanseeeeees 145
5.7CI0OSING @ STIMRAIM......iiiiiiiiiiiiiee ettt e oo oo e e e e bbbttt et ettt e et e e e e e e e e e e e e s e s e s e aaannaeeneenees 146
5.8Character-wise and LINE-WISE I/O...........uuiiiiiiiie e e e e e e e s 147
5.9ReadiNg @nNd WIEING......cccoiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e bbb e e 149
5.10Determining the CUrrent POSITION...........uuuuuiiiiiie st e e e e e e e e e e e e e s e aeeeeeeeees 150
5.11Positioning WIthin @ File..........uuueii e 151
5.12Errors: Discovery, Handling, and RECOVEIY..........coiiiiiiiiiiii e 153
5.13Common Differences and Problems with Stream I/O................cccovviiiicecceeeceamennnn.... 155
5.13.1Where Implementations are Allowed to Differ..........cccoooiviiiiiiiiiie e, 155
5.13.2Where Implementations might Differ anyway............cccoooeeviiiiiiiii e 156
5.13.3LINES() and CHARS() are INACCUIAte..........ccceeuuiiieiiiiiiii e eeeeti e e e et eeaeans 156
5.13.4The Last LiNe Of & StrEAIM........coiiiiiiiii e e e eeeeeeens 158
5.13.50ther Parts Of the 1/O SYSIEM......cooi i 158
5.13.6Implementation-Specific INFOrMatioN.............ooviiiiiiiiii e 159
5.13.7Stream 1/O iN REGING 0.078.......cuiuuiiiiiiaiae et e e e e e e e e e e e e e e e s s eeeeeeeees 159
5.13.8Functionality to be Implemented Later...........coouiuiiiiiiiiiii e 162
5.13.9Stream /O iN AREXX L. L5 . iiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e ae e e e e eeeas 162
5.13.10Main Differences from Standard REXX...........uoiiiiiiiiieiiiiiiiiiiiissee e eeeeeeeeeeeeenenennnnnes 166
5.13.11Stream /O in BREXX L.0D....cooiii e 168
5.13.12Problems with Binary and TeXt MOUES............uuiiiiiiiiiiiie e e e 172
oY =] K] 0] PO UPPPPPPPPPPPTPPTRN 175
B.1WHY HAVE EXIENSIONS......uuiiiiiiiiiii it e e e e e e e e e e et e e e e e ee bt e e e e e eesasaaeeeeennes 175
6.2Extensions and Standard REXX.......cooouiii e 175
6.3Specifying EXtENSIONS IN REQING........ui i e e e e et e aaeens 175
6.4TNE TrOUDIE BeOINS. ...ttt ettt e e e e e e e e e e e e e e e e e e aeebbbbbeenees 176
6.5The Format of the OPTIONS ClAUSE.........coiiiiiiiiiiieeeeeerr e e e e e e 176

B.6The FUNAAMENIAl EXIENSIONS. .. e e e et e e e e e e e e e e e e eanens 177

ALY = = BT 4 (=] 1S [0 1 1 U 180
RS T= T 1S3 =T o F= T 0 PSRRI 180
GRS = 1 o F= 1o £ U 180
AL 155> Lo PRSP 183
7.1Background @nd NISTOMY........ccoiii oot e e r e e e e e aeaeeeeas 183
7.2General functionality Of the STACK..........ccooii i 183
7.2.1BaSIC FUNCHONAITY......euii e e e e e e e e 183
7.2.2LIFO and FIFO Stack OPeratiONS.........c.uuiiiiiiiiieiiiiiie et e e 185
7.2.3Using multiple buffers in the Stack.............oooi i 186
7.2.4The Zeroth DUFTEI ... e 187
7.2.5CreatiNng NEW STACKS.cciieiiiiii et e e e e e e et e e e e e et e e e e e eeasaaeeeeeeaaen 188
7.3The interface between REXX and the Stack............cooouuiiiiiiiiiiiii e 189
7.4Strategies for IMplemeNnting StACKS.ouiuuiuiuiiaie e e e e e e 189
7.5Implementations of the Stack iN REGING.............oiiiiiiiiiii e 191
7.5.1Implementation of the internal stack in Regina 2.2..........ccccceeiviiiiiiiiiiiiiceeeeeeeeee. 192
7.5.2Implementation of the external stack iN RegiNA 2.2...........cooviiiiiiiiiiiiiiiiiiiieeeeee e 193
8Interfacing ReXX t0 Other PrOgramIS.uuuuuiiiiieiii et e e e e e e as 197
8.10verview Of FUNCHONS IN SAA. .. .o e e e e s e e e e e e e e eeeeeeeeeeeennnnn s 197
8.1.1INnclude Files and LIDIariEs.uiii i 197
8.1.2PreproCesSor SYMDBOIS.......cocuuiii e 198
8.1.3Data Structures and data tYPES........uuiiiiiiii et 198
8.1.3.1The RXSTRING SIUCIUIE......cciiiiiiiieiieeiiiiiitiir e et e e e e e eees 199
8.1.4The RXSYSEXIT SITUCTUIE.... .ottt e e 200
8.2The Subcommand Handler INterface.............uuiiiiiiiiii e 201
8.2.1What is @ Subcommand HaNAIEN...........ooeeeiiiiiiiiiie et e e e e e e e e e e e eeeeaaneees 201
8.2.2The RexxRegisterSUbBCOMEXe() FUNCHION..........ooiviiiiiiiiiie e 202
8.2.3The RexxRegisterSubcomDII() fUNCLION............oooviiiiiiiiii e 203
8.2.4The RexxDeregisterSubcom() fUNCHION............oiiiiiiiiiiiii e 204
8.2.5The RexxQuerySubCom() FUNCLION. 205
8.3The External Function Handler INterface..............ieeiiiiiiiiiee s e e 206
8.3.1What is an External Function Handler...............ooooiiiii e 206
8.3.2The RexxRegisterFunctionEXe() fUNCHON..........couvii i 207
8.3.3The RexxRegisterFunctionDII() function.............cccoooviiiiiiii e, 207......
8.3.4The RexxDeregisterFunction() fUNCLON............oooiiiiiiiii e 208
8.3.5The RexxQueryFunction() FUNCHION............ooiiiiii e 209
8. AEXECULING REXX COUC. ittt e e et e e e e e et e e e e e e e aa e e e e e eaasa e eeeaenes 210
8.4.1The RexXXSTart() FUNCHION.........oiiiiiiiiii et 210
8.5Variable POOI INTEITACE.cii e e e e s s e e e e e e e e e eaeeeeeeennnes 214
8.5.1SYMDONIC OF DIFBCT.....eeetiieitieie et e e e e e e e e e e e 214
8.5.2The SHVBLOCK SITUCTUIE......cciieeiiiee e eee e e ettt e e e e e e e e e e e e e e e eaeneeeennnn s 214
8.5.3Regina Notes for the Variable POOL............ccoooi i 218
8.5.4The RexxVariablePool() FUNCHON............uiuiiiiiiieee e 219
8.6The System EXit Handler INterfacCe............oooiiiiiiiiiiii e 221
8.6.1The System EXit HANAIE........... i eaaes 221
8.6.2List of System EXit HANAIEIS..........uniiiiii e eeens 222
8.6.2.1.1RXFNC - The External Function Exit Handler................ccccviiiiiiiiiii 222
8.6.2.2RXCMD - The Subcommand Exit Handler.............ccoooiiiiiiiiiicii e 223
8.6.2.3RXMSQ - The External Data Queue Exit Handler................ccoooiviiiiiiiiiii e, 224
8.6.2.4RXSIO - The Standard I/O EXit HANAIEN..........ccceiiiiieeeeeeeires e 226
8.6.2.5RXHLT - The Halt Condition Exit HANAIEr..............cvvuiiuiiiiiiiiiee e 227

8

8.6.2.6RXTRC - The Trace Status EXit HANAIEN.........oeoeieeee e 227

8.6.2.7RXINI - The Initialization EXit HandIer...............ouuuriiiiiieie e 227
8.6.2.8RXTER - The Termination EXit HandIer..............ccoouviiiiiiiiiiieee e 227
8.6.2.9RXENV - The External Environment Exit Handler...............cccccovrviiiiiiciccienneenn. 228
8.7The External QUEUE INTEITACE..........uuuii ettt r s e e e e e e e e e aeeeaeeeeenees 229
8.7.1The RexxCreateQUEUE() FUNCLION.uuuiiiiie e 229
8.7.2The RexxDeleteQuUeue() FUNCLION..........uuutiier et 230
8.7.3The RexxQueryQueue() FUNCHION. ...t e e eeaae 230
8.7.4The RexxAddQuUEUE() FUNCHION........cocuiiii e e e 231
8.7.5The RexxPullQueue() FUNCHION.........cooui e e 231
8.8The MaCIrO SPACE INtEITACE........ccceeiiiiii e e e e e e e e e e eeane 233
8.8.1The RexXAddMaCIo() FUNCLION..........ii i 233
8.8.2The RexxXDropMacro() FUNCHION..........coiiiii e 233
8.8.3The RexxSaveMacroSpace() FUNCHON...........ooiiiiiiiiiiiii e 233
8.8.4The RexxLoadMacroSpace() FUNCHON...........cooiiiiiiiiiiiiiii e 233
8.8.5The RexxQueryMacro() TUNCHION..........cooiiiiiiiie e 233
8.8.6The RexxReorderMacro() fUNCHION.cooui it 233
8.8.7The RexxClearMacroSpace() FUNCHON............ooiiiiiiiiiiiiiiiee e 233
8.9Allocating and De-alloCatiNng SPACE........uuuiuiiiiiiiiiiiiie e a e e e e e e e e e 234
8.9.1The RexxAllocateMemory() fUNCLON.............oiiiiiiiii e 234
8.9.2The RexxFreeMemory() FUNCHON...........coiiiiii e e e e 234
8.10Calling back into runniNg REXX COUE.........cuuiiiiiiiiiiiie e eeeaaae 235
8.10.1The RexxCallBack() FUNCHION..........coiiii e 235
OIMPIEMENTALION LIMITS. ... iiiti it e e e e e e e et e e e e e e et e e e e e e et e e e e e eetaa e eeas 238
0. LWNY USE LIMES 2. ittt e e e e et e e e e e e et it e e e e e esta e e e e e eesaaneeeaeeenes 238
9.2What LIMIES 10 CROOSE?......ueiieeeieiiis ettt e ettt e e e e e e e e e e e e et et e e e e ettt asaaeaaeeeeeeeeeeeennnnnnnes 238
SRS T =T o |1 =To [o 111 £ T PP PPPTPPPPPPPR 238
9.40I1der (ODSOIELE) LIMTS.cii i eeee ettt e e e e e e e e e e r e e e e e e e e aeeeeeaeas 239
9.5What the Standard dOES NOT SAY........uuuiiiiiiie et e e e e e e beeeeees 240
9.6What an Implementation is Allowed t0 "IgNOIe”............uuuuiiiiiiiiiiiiiieee e 240
O.7LIMIES 1N REGINA. ... cee i et ettt e e e e e e e e e e e o e et b ettt ettt et et e e e eeeeeeeeaesaaaannnnnebbeeeeees 241
0N o o1 g o 15 PRSPPI 244
(O D= (T T (o] KPP 244
002 =11 o] [To e | =1 o])Y/ 248
10.3GNU Free Documentation LICENSE.uiiiiiiiiiiiiiiiieiiee et e e 250

1 Introduction to Regina

This chapter provides an introductionRegina, an Open SourcRexx Interpreter distributed
under the GNU General Library License.

1.1 Purpose of this document

The purpose of this document is to provide an overview dRée language and thiRegina
implementation of th®exx language. It is not intended as a definitive referenéeix; you
should really have a copy of tRexx "bible"; The Rexx Languagby Mike Cowlishaw TRL2].

1.2 Implementation

TheRegina Rexx Interpreter is implemented as a library suitable for linking into third-party
applications. Access ®Regina from third-party applications is via thegina API, which is
consistent with the IBM's REXX SAA API. This APl is implemented on most &gk
interpreters.

The library containingRegina is available either as a static library or as a dynamically loadable
library. The only functional difference between the two libraries is that theyabidynamically
load Rexx external function packages via the built-in functiBifFuncAdd, is only available with
the dynamically loadable library.

TheRegina distribution also includes a front end to fRegina library, to enable the execution of
Rexx programs directly from the command line. Teenmand lineeferred to here relates to the a
Unix shell, an OS/2 or DOS command window or a Windows NT/9x command prompt.

On platforms where both a static and a dynamic executable exist, it should be notes dbdity

to load and execute external functions viaRk&uncAdd function, is only available by running
the dynamic executable.

10

1.3 Ports of Regina

Regina has been ported to many operating systems. The following table provides implementation
details of each of the ports Begina.

Operating System Static Dynamic Dynamic Dynamic Static
Library Library Library Executable = Executable
ThreadSafe
?
Linux libregina.a libregina.so Yes regina rexx
HP-UX libregina.a libregina.sl No regina rexx
AlX libregina.a libregina.a Yes regina rexx
Other Unix libregina.a libregina.so Maybe regina rexx
32-bit DOS (DJGPP) libregina.a N/A No N/A rexx.exe
(UsesDPMI
memory manager)
32-bit DOS (EM X) regina.a N/A No N/A rexx.exe
(Uses VCPI memory
manager)
0S2 (EMX) regina.a regina.dll Yes regina.exe rexx.exe
(regina.lib)
0S/2 rexx.lib regina.dll No regina.exe rexx.exe
(OpenWatcom) (regina.lib)
Windows rexx.lib regina.dll Yes regina.exe rexx.exe
IX/Me/NT/2k/XP (regina.lib)
BeOS libregina.a libregina.so No regina rexx
AmigaOS libregina.a N/A No N/A rexx
EPOC32 N/A N/A No N/A rexx.exe
AtheOS libregina.a libregina.so No regina rexx
ONX 4.2x rexx.lib N/A No N/A rexx
QNX 6.x libregina.a libregina.so Yes regina rexx
MacOS X libregina.a libregina.dylib No regina rexx
SkyOS libregina.a libregina.dll No regina.app rexx.app

1.4 Executing Rexx programs with Regina

Rexx programs are generally executedRBgina from thecommand linen the following manner:

regina [switche§[program] [program parameteis

where:
regina is the name of thRegina executable (see table above)
switches are optional switches. See the section below for an explanation of the

switches currently supported Begina

11

program the name of th&®exx program to be executed. See the section
External Rexx Programs, below, for details on ho®Regina
interprets this argument. If no program name is specitedina
waits forRexx commands to be typed in and will execute those
commands when the appropriate end-of-file character (*"D on Unix
and ~Z on DOS, 0S/2 and Windows NT/95) is typed.

program parametersany optional parameters to be passed tdréwex program.

Rexx programs to be executed Bggina on Unix platforms can take advantage of a feature of
Unix shell programs calleshagic numbers By having the first line of Rexx program consist of
the special sequence#ffollowed by the full file name of thRegina executable, you can invoke
this program simply by typing the name of ®Rexx program on theommand lindollowed by any
parameters you wish to pass to Rexx program. The file name must also have the appropriate
execute bit set for this to work. As an example supposeR@xx program,myprog, contained:

#!/usr/local/bin/regina
Parse Version ver
Say ver

When executing this program from tbemmand lindy typingmyprog, the Unix shell program
would execute the prografusr/local/bin/regina and pass the remainder of the lines in
the file to this program viatdin

The special processing doneRggina to find the file name IREGINA_MACROS and the file
extension searching is ignored for the program to be run when using the magic number method of
invocation, but is still done inside the program when uSIAg L .

1.4.1Switches

The following switches allow the user to control hBegina executes the supplid®exx program.
Switches are recognised by a leading hyphen charattatiowed immediately by a single
alphabetic character. Some switches allow for optional parameters. These, ttéalawashe
switch without any intervening spaces. All switches and their optional paramet&sse-
sensitive. Switches that take no option can be combined. e.g. “-arp”

-t[trace parametdr Turn on the specified tracing level. The optiottate parameter
indicates the tracing level to be used. See the TRACE command later
in this document for an explanation of each trace level. Use of this
switch will result in any TRACE commands in the program to be
ignored.

-a Without this switch, all command line parameters are passed to
Regina as a single argument. Specifying -a, ensures thiteke
program invoked has access to the command line parameters as
separate arguments, as passed from the command line interpreter. i.e.
The BIF ARG() can return a value of other than 1 or 0. Also PARSE
SOURCE will return SUBROUTINE instead of the normal
COMMAND value.

-r RunRegina in restricted mode. See the sectiorRagina

12

Restricted Mode for more details.

-v Displays the version information for the executable run. The string
displayed is the same that is returnedPB\RSE SOURCE. The
version string provides an indicator as to whetheRbgina library
is thread-safe or not. If the first word ends in“(MT)”, then the library
is thread-safe. This switch, executed by tiagis executablewill
always result in no“(MT)"indicator.

-I[localg] Indicates which national locale thiaegina is to use foBIFs like
TRANSLATE, LOWER, or UPPER. No validation is done on the
specified locale. The affected behaviour is defined in Section 2;
“Native Language Support”.

Thelocaleis passed to the underlying C library, which resolves the
describer in a system specific way. An omitiechle lets the system
choose the current pre-selected locale for the user. This is the usual
option a user would choosel "™ without alocale, works best for

most users who decided to use locale support. Error messages can be
selected by another scheme using an environment variable, see Section
2; “Native Language Support”; this variable can be used to select a
locale, too.

The text of théocaleis equivalent to those of the environment
variablesLANGor LC_CTYPEor the value used in registries, etc.
Examples aren_US.ISO-8859-1 orEnglish_USA.1252 for

some systems.

-p This switch causes Regina to pause on exit. This is only valid on most
platforms. This switch is useful if you run Rexx programs from a GUI
file manager and want to see the output from that program.

-C Compilethe specifiegorogram into a tokenised format. The only
program parameters when using this switch is the filename for the
tokenised program. i.eegina -c program filename

-e Executethe specified program from a tokenised fornpatbgram
must be a file created by the -c switch. All other switches and program
parameters are allowed.

1.4.2External Rexx programs

Regina searches foRexx programs, using a combination of tREGINA_MACROS
environment variable, tHeATH environment variable, tiREGINA_SUFFIXES environment
variable and the addition of filename extensions. This rule applies to both externahfeats
within aRexx program and thprogram specified on theommand line

First of all we process the environment varid®REGINA_MACROS. If no file is found we

proceed with the current directory and then with the environment vaRaAflel. The semantics of
the use oREGINA_MACROS andPATH are the same, and the search in the current directory is
omitted for the superuser on Unix systems for security reasons. The curreoryginacst be

specified explicitly by the superuser.

When processing an environment variable, the content is split into the different pathshapdtiea
is processed separately. Note that the search algorithm to this point is igribesprdgram name
contains a file path specification. eg. if "CALL \MYPROG" is called, then nchaay of
REGINA_MACROS or PATH is done; only the concatenation of suffixes is carried out.

13

For each file name and path element, a concatenated file name is created. If a lenextarfsion
is part of the file name only this file is searched, otherwise the file nameereded by the
extensions " (empty string), ".rexx", ".rex", ".cmd", and ".rx" in this order. Tleenhme case is
ignored on systems that ignore the character case for normal file operatidd® $k&Vindows,
and OS/2.

The first matching file terminates the whole algorithm and the found fileusnezt.

The environment variabRREGINA_SUFFIXES extends the list of known suffixes as specified
above, and is inserted after g@mptyextension in the proceREGINA_SUFFIXES has to
contain a space or comma separated list of extensions, a dot in front of each doimed; al

e.g. ".macro,.mac,.regina" or "macro mac regina"

Note that it is planned to extend the list of known suffixes by ".rxc" in version 3.4 to allow for
seamless integration of pre-compiled macros.

Example: Locating an external Rexx program for exec ution

Assume you have a call to an external function, and it is coded as follows:
Call myextfunc argl, arg2

Assume also that the filmyextfunc.cmd exists in the directory /opt/rexx/, and that
PATH=/usr/bin:/opt/rexxREGINA_MACROS s not set, anREGINA_SUFFI XES=.macro.

The files that Regina will search for in order are:
Jmyextfunc
Jmyextfunc.macro
Jmyextfunc.rexx
Jmyextfunc.rex
/myextfunc.cmd
Jmyextfunc.rx

/usr/bin/myextfunc
/usr/bin/myextfunc.macro
/usr/bin/myextfunc.rexx
/usr/bin/myextfunc.rex
/usr/bin/myextfunc.cmd
lusr/bin/myextfunc.rx

/opt/rexx/myextfunc

lopt/rexx/myextfunc.macro

lopt/rexx/myextfunc.rexx

lopt/rexx/myextfunc.rex

lopt/rexx/myextfunc.cmd /* found!! terminate search*/

14

2 Rexx Language Constructs

In this chapter, the concept and syntaR&XX clauses are explained. At the end of the chapter
there is a section describing hd®egina differs from standarREXX as described in the first
part of the chapter.

2.1 Definitions

A program in theREXX language consists of clauses, which are divided into four groups: null
clauses, commands, assignments, and instructions. The three latter groups (conssigndsgats,
and instructions) are collectively referred to as statements. This does obttheaterminology in
[TRL2], where "instruction" is equivalent to what is known here as "statement", aywidike
instruction” is equivalent to what is known here as "instruttidgtowever, | find the terminology
used here simpler and less confusing.

Incidentally, the terminology used here matches [DANEY].

A clause is defined as all non-clause-delimiters (i.e. blanks and tokens) up to and ireicidunge
delimiter. A token delimiter can be:

* An end-of-line, unless it lies within a comment. An end-of-line within a constant sring
considered a syntax error {6}.

« A semicolon character that is not within a comment or constant string.

* A colon character, provided that the sequence of tokens leading up to it consists of a single
symbol and whitespace. If a sequence of two symbol tokens is followed by a colon, then this
impliesSYNTAXcondition {20}.

Some systems have the ability to store a text file having a last line untethinyean end-of-line
character sequence. In general, this applies to systems that use an exptitiirendharacter
sequence to denote end-of-lines, e.g. Unix and MS-DOS systems. Under these dytemast i

line is unterminated, it will strictly speaking not be a clause, since a claistendude its
terminating clause delimiter. However, some interpreters are likelgaod¢he end-of-file as a
clause delimiter too. The functionality INTERPRETgives some weight to this interpretation. But
other systems may ignore that last, unterminated line, or maybe issue a symtglewever,

there is n&YNTAXcondition number adequately covering this situation.

Example: Binary transferring files

Suppose REXX program is stored on an MS-DOS machine. Then, an end-of-line sequence is
marked in the file as the two characters carriage return and newline. Ifahsstfansferred to a
Unix system, then only newline marks the end-of-line. For this to work, the file musinisétred
as a text file. If it is (incorrectly) transferred as a binary file, #sailt is that on the Unix system,
each line seems to contain a trailing carriage return character. In an ediightilook like this:

say 'hello world*M
say 'that"s it"M

This will probably rais&SYNTAXcondition {13}.

15

2.2 Null clauses

Null clauses are clauses that consist of only whitespace, or comments, or bothjon &ulthte
terminating clause delimiter. These clauses are ignored when interpheticogde, except for one
situation: null clauses containing at least one comment is traced when appropuidtdaudes not
containing any comments are ignored in every respect.

Example: Tracing comments

The tracing of comments may be a major problem, depending on the context. There dig basica
two strategies for large comments: either box multiple lines as a somglaent, or make the text
on each line an independent comment, as shown below:

trace all

/*
This is a single, large comment, which spans multiple
lines.
Such comments are often used at the start of a subroutine
or
similar, in order to describe both the interface to and the
functionality of the function.
*/

[* This is also a large comment, but it is written as */

/* multiple comments, each on its own line. Thus, these */
[* are several clauses while the comment above isa */
[* single comment. */

During tracing, the first of these will be displayed as one large comment, and dtenagtive
tracing, it will only pause once. The second will be displayed as multiple lines, dmalakeé
several pauses during interactive tracing. An interpreter may solve thisositmeseveral ways, the
main objective must be to display the comments nicely the to programmer debuggiogethe c
Preferably, the code is shown in a fashion that resembles how it is entered in the file

If a label is multiple defined, the first definition is used and the rest are ignoudiipl®ldefined
labels is not alsYNTAXcondition.

A null clause is not a statement. In some situations, like aftik®Nsubclause, only a statement
is expected. If a null clause is provided, then it is ignored, and the next statemedtinsiesel.

Consider the following code:

16

parse pull foo

if foo=2 then

say 'foo is not 2'
else

[* do nothing */
say 'that "sit'

This will not work the way indentation indicates, since the comment in this exanmaeas
statement. Thus, tHeLSE reads beyond the comment, and connects t8Ahénstruction which
becomes th&LSE part. (That what probably not what the programmer intended.) This code will
saythat's it , only whenfoo is different from2. A separate instructioNOPhas been

provided in order to fill the need that was inadequately attempted filled by the comrtientode
fragment above.

Example: Trailing comments

The effect that comments are not statements can be exploited when documenting éne, jarrod)
simultaneously making the program faster. Consider the following two loops:

sum=0

doi=1to 10

[Fsum123..8910%
sum =sum + i

end
sum=0
doi=1to 10
sum=sum+i /Asum123..8910%
end

In the first loop, there are two clauses, while the second loop contains only one clause, thecaus
comment is appended to an already existing clause. During execution, the intbgsetespend

time ignoring the null clause in the first loop, while the second loop avoids this problemmifags
tracing is unenabled). Thus, the second loop is faster; although only insignificaethfdasmall

loops. Of course, the comment could have been taken out of the loop, which would be equally fast
to the second version above.

2.3 Commands

2.3.1.1Assignments

Assignments are clauses where the first token is a symbol and the second tokequial thigre€).
This definition opens for some curious effects, consider the following clauses:

a==
This is not a command, but an assignment of the expresdioto the variable. Of
course, the expression is illegab() and will trigger &SYNTAXcondition for syntax error
{35}. TRL2 defines the operatar= as consisting of two tokens. Thus, in the first of these

17

examples, the second tokerrighe third token is alse, while the fourth token ib.

3=5
This is an assignment of the vaki¢o the symboB, but since this is not a variable symbol,
this is an illegal assignment, and will trigger &&NTAXcondition for syntax error {31}.
"hello" = foo

This is not an invalid assignment, since the first token in the clause is not a symbatl,Inst
this becomes a command.

arg =(foo) bar
The fourth statement is a valid assignment, which will space-concatenat® thariable
symbolsfoo andbar , and assign the result to the variable synalogl. It is specifically
not anARGinstruction, even though it might look like one. If you needR®instruction
which template starts with an absolute indirect positional pattern, uBARSE UPPER
ARGinstruction instead, or prepend a dot in front of the template.

An assignment can assign a value to a simple variable, a stem variable or a compabted vari

When assigning to a stem variable, all possible variable symbols having thatestessigned the
value. Note specifically that this is not like setting a default, it is a onentiuftgple assignment.

Example: Multiple assignment

The difference betwedREXX's multiple assignment and a default value can be seen from the
following code:

foo. = 'bar’
foo.1 = 'baz'
drop foo.1

say foo.1 [* says "FOO.1" */

Here, theSAY instruction writes ouFOO.1, notbar . During theDROHnstruction, the variable
FOO.1 regains its original, uninitialized val#0.1, not the value of its stem variat©0., i.e.
bar , because stem assignments does not set up a default.

Example: Emulating a default value

If you want to set the compound variable to the value of its stem variable, if the stémlized,
then you may use the following code:

if (symbol(‘'foo.")) then
foo.1 = foo.

else
drop foo.1

In this example, thEOO.1 variable is set to the value of its stem if the stem currently is assigned a
value. Else, th€0OO0.1 variable is dropped.

However, this is probably not exactly the same, since the internal storage of theemslikely

18

to store variables likeOO.2 andFOO.3 only implicitly (after all, it can not explicitly store every
compound havingOO. as stem). After the assignment of the valuE@O. to FOO.1, theFOO.1
compound variable is likely to be explicitly stored in the interpreter.

There is no way you can discover the difference, but the effects are often that mmney isaused,
and some functionality that dumps all variables may de@@.1 but notFOO.2 (which is
inconsistent). See secti®exxVariablePool.

Example: Space considerations

Even more strange are the effects of the following short example:

foo. = 'bar’
drop foo.1

Although apparently very simple, there is no way that an interpreter can rdleasenary referring
to FOO.1. After all, FOO.1 has a different value th&00.2, FOO.3, etc., so the interpreter must
store information that tells it th&00.1 has the uninitialized value.

These considerations may seem like nit-picking, but they will matter if you dropflotenpound

variables for a stem which has previously received a value. Some programming ididmss st t
be aware. If you can do without assigning to the stem variable, then it is possible foerheier
to regain all memory used for that stem's compound variables.

2.4 Instructions

In this section, all instructions in stand&&XX are described.
Extensions are listed later in this chapter.

First some notes on the terminology. What is called an instruction in this documenvadesgud

a "unit' of clauses. That is, each instruction can consist of one or more clauses. For instance, the
SAYinstruction is always a single instruction, but tiReinstruction is a multi-clause instruction.
Consider the following script, where each clause has been boxed:

if a=b then

say 'hello’
else

say 'bye'

Further, theTHENor ELSE parts of this instruction might consist oD&ENDpair, in which case
thelF instruction might consists of an virtually unlimited number of clauses.

Then, some notes on the syntax diagrams used in the following descriptions of the omstriitte
rules applying to these diagrams can be listed as:

* Anything written incourier font in the syntax diagrams indicates that it should occur as-is in
theREXX program. Whenever something is writtentalic font, it means that the term should
be substituted for another value, expression, or terms.

« Anything contained within matching pairs of square brackets ([...]) are optional, and theéty be

19

out.

* Whenever a pair of curly braces is used, it contains two or more subclauses thaarateddy
the vertical bar|(). It means that the curly braces will be substituted for one of the subclauses it
contains.

* Whenever the ellipsis (...) is used, it indicates that the immediately precsabitiguses may
be repeated zero or more times. The scope of the ellipsis is limited to the consesés of
square brackets or curly braces, if it occurs there.

* Whenever the vertical béris used in any of the syntax diagrams, it means that either the term
to the left, or the term to the right can be used, but not both, and at least one of the must be used.
This "operatotis associative (can be used in sequence), and it has lower priority than the square
brackets (the scope of the vertical bar located within a pair of square bracketg brames is
limited to the text within those square brackets or curly braces.

 Whenever a semicolon) is used in the syntax diagram, it indicates that a clause separator must
be present at the point. It may either be a semicolon character, or an end-of-line.

* Whenever the syntax diagram is spread out over more lines, it means that any o$ ttemline
be used, but that the individual lines are mutually exclusive. Consider the syntax:

SAY = synbol
string

This is equivalent to the syntax:
SAY [synbol | string]

Because in the first of these two syntaxes SA¥ part may be continued at either line.

« Sometimes the syntax of an instruction is so complex that parts of the syntaxrhastbested,
and is shown below in its expanded state. The following is an example of how this looks:

SAY something TO someone

something : = HI
HELLO
BYE

someone : = THE BOSS
YOUR NEIGHBOR

You can generally identify these situations by the fact that they comes a bitthelosal
syntax diagram, and that they contains a colon character after the name of tioebierm
expanded.

In the syntax diagrams, some generic names have been used for the various partspin order t
indicate common attributes for the term. For instance, whenever a term in thedsggtars is
calledexpr, it means that any validEXX expression may occur instead of that term. The most
common such names are:

condition
Indicates that the subclause can be any of the names of the conditioB3NT&\X
NOVALUEHALT, etc.

expr
Indicates that the subclause can be any VXX expression, and will in general be

20

evaluated as normal during execution.

statement
Indicates that extra clauses may be inserted into the instruction, and tht @xadf them
must be a true statement.

string
Indicates that the subclause is a constant string, i.e. either enclosed by singl€' qtobe
double quotes ("...").

symbol
Indicates that the subclause is a single symbol. In general, wheyeveolis used as the
name for a subclause, it means that the symbol will not automatically be expanded to the
value of the symbol. But instead, some operation is performed on the name of the symbol.
template
Indicates that the subclause is a parsing template. The exact syntax oéxpisiised in a
chapter on tracing, to be written later.

In addition to this, variants may also exist. These variants will have an etdraolenumber

appended to the name of the subclause, and is used for differing between two or more subclauses
having the same "type" in one syntax diagram. In the case of other names for the ssitiass

are explained in the description of the instruction.

2.4.1The ADDRESS Instruction

ADDRESS =[environnment [conmmand]]| redirection]];
[[VALUE] expr [redirection]];

redirection:=WITH input _redir [output _redir][error_redir]
WITH i nput _redir [error _redir][output_redir]
WITH output _redir [input _redir][error_redir]
WITH output _redir [error_redir][input_redir]
WITH error _redir [input _redir][output_redir]
WITH error _redir [output _redir][input_redir]

i nput _redir :=INPUT NORMAL
INPUT io0

out put _redir : =OUTPUT NORMAL
OUTPUT [APPEND | REPLACE] i o

error_redir : = ERROR NORMAL
ERROR [APPEND | REPLACE] io0

i 0:={STREAM | STEM | LIFO | FIFO } synbol
{ STREAM | LIFO | FIFO } string

We will discuss redirection later.

The ADDRESS$nstruction controls where commands to an external environment are sent. If both
environmentndcommandare specified, the given command will be executed in the given
environment. The effect is the same as issuing an expression to be executed aaradq@een
sectionCommands), except that the environment in which it is to be executed can be explicitly

21

specified in theADDRESSIlause. In this case, the special varid@will be set as usual, and the
ERROPRr FAILURE conditions might be raised, as for normal commands. StartindReima
3.0 the special variableRC and.RS are set too, according to the ANSI standard.

In other words: Alihormalcommands are ADDRESS statements with a suppressed keyword and
environment.

Theenvironmenterm must be a symbol or a literal string. If it is a symbol, its "name" is used, i
is not tail substituted or swapped for a variable value.cbhemandandexpressiorierms can be
anyREXX expression. eg.

SYSTEM="PATH'
ADDRESS SYSTEM "echo Hello"

IS equivalent to a plain

ADDRESS SYSTEM "echo Hello"
or
ADDRESS "SYSTEM" "echo Hello"

for the externabchocommand.
A symbol specified as an environment name isn't case-sensitive, whereag emasi match the
case. Built-in environments are always uppercased.

REXX maintains a list of environments, the size of this list is at least two. If yect sehew
environment, it will be put in the front of this list. Note thatdimnmands specified, the contents of
the environment stack is not changed. If you @ommandenvironmentvill always be put in the
front of the list of environmentskegina has an infinite list and never pushes out any entry.
Possible values are listed below. If you supptpamandvith the ADDRESStatement, the
environments interpreted as a temporary change for just this command.

What happens if you specify an environment that is already in the list, is not comqiéttedd.

Strictly speaking, you should end up with both entries in the list pointing to the same envifonment
but some implementations will probably handle this by reordering the list, leavingj¢loted

environment in the front. This is Regina's behavior. Every environment exists only once. The
redirection command below always changes the behavior of one -- the given -- environment. You
can imagine a set of playing cards in your hand. The operation is to draw one card by name and put
it to the front.

If you do not specify any subkeywords or parameteAAOBDRESSthe effect is to swap the two first
entries in the list of environments. Consequently, execAiPiQRES 3nultiple times will toggle
between two environments.

The second syntax form AIDDRESSs a special case of the first form wdbmmancdomitted. If

the first token afteADDRES$s VALUE then the rest of the clause is taken to be an expression,
naming the environment which is to be made the current environment. \UsingEmakes it
possible to circumvent the restriction that the name of the new environment must dmbasym
literal string. However, you can not combine bgthLUEandcommandn a single clause.

Example: Examples of the ADDRESSnstruction

22

Let's look at some examples, they can sometimes be combined with a redirection:
ADDRESS COMMAND
ADDRESS SYSTEM 'copy' fromfile tofile
ADDRESS system
ADDRESS VALUE newenv
ADDRESS

ADDRESS (oldenv)
The first of these sets the environmE€@MMAN&ES the current environment.

The second performs the commarmpy' in the environmen®YSTEMusing the values of the
symbolsfromfile andtofile as parameters. Note that this will notS¥ISTEMas the current
environment.

The third example se®8YSTEMas the current environment (it will be automatically converted to
upper case).

The fourth example sets as the current environment the contents of the sgmbol/, pushing
SYSTEMlown one level in the stack.

The fifth clause swaps the two uppermost entries on the stacEYe®OEMends up at the top
pushing the environment specfiedniewenvbelow it.

The sixth clause is equivalent to the fourth example, but is not allowed by ANSI. Sgioa B®
this style is deprecated and can't be us@PiTIONS STRICT_ANSI is in effect. Again, avoid
this kind of ADDRESStatement style, and use MALUEversion instead.

Example: The VALUEsubkeyword

Let us look a bit closer at the last example. Note the differences between thauses.c
ADDRESS ENV
ADDRESS VALUE ENV

The first of these sets the current default environmelaNg while the second sets it to the value
of the symboENV.

If you are still confused, don't Panic; the syntaADDRESS$s somewhat bizarre, and you should

not put too much effort into learning all aspects of it. Just make sure that you understand leow to us
it in simple situations. Chances are that you will not have use for its more copgpheaiants for

quite some time.

Then, what names are legal as environments? Well, that is implementatidit.Sipgicsome
names seems to be in common use. The GOMMANID sometimes used to refer to an

23

environment that sends the command to the operating system. Likewise, the name of ting opera
system is often used for thiEMSUNIX, etc.). You have to consult the implementation specific
documentation for more information about this. Actually, there is not really angtiess on what
constitutes a legal environment name (even the nullstring is legal). Someeitaesprill allow you

to select anything as the current environment; and if it is an illegal name, tipeategewill

complain only when the environment is actually used. Other implementations may notalltav
select an invalid environment name at all.

Regina allows every name as an environment ndRegina gives an error message about wrong
names only when the name is used. The error string looks somewhat stRegaad is used as a
separate program, since the extension of the environment name space is only usefuhmhgn r
as part of a program which extends the standard names.

Regina uses three kinds of environments. Some have alias names. The environment names are:

SYSTEM
al i as OS2ENVIRONMENT
al i as ENVIRONMENT

This is the default environment which is selected at startup. The standard opegsiéng s
command line interpreter will be loaded to execute the commands. You can use the built-in
commands of the command line interpreter, often called shell, or any other program which
the command line interpreter can find and load.

COMMAND
al i as CMD
al i as PATH

This environment loads the named program directly. You may supply a path if this is needed
for the current operating system to load the program, otherwise Regina usesdagista
operating system search rules for programs. This is done by searching throughgtdf ite
the PATH system-environment variable in most operation systems. You can't use built
shell functionality like system redirections like you can with SYSTREQina's
redirections are more powerful and work in either environment.

REXX
al i as REGINA

This environment uses a new instance ofRbgina interpreter program to execute a

program. The program has to bBREXX script. This environment has several advantages.
The output of a script can be redirected, the process is independent and a risk of a crash is
minimized when playing with external libraries, finalBegina itself tries to find the
correctREXX interpreter by itself and does everything to create a new incarnation of
Regina.

The definition ofREXX says nothing about which environment is preselected when you invoke the
interpreter, although TRL defines that one environment is automatically ptedeldten starting

up aREXX script. Note that there is mMONEenvironment in standaREXX, i.e. an environment

that ignores commands, but some interpreters implememRAEEsetting ??7? to accomplish this.
Regina uses the environmeBtY STEMas the preselected environment as mentioned above. More
implementation specific details can be found in the section implementation spectimentation

24

for Regina.

The list of environments will be saved across subroutine calls; so the effectADBRESS
clauses in a subroutine will cease upon return from the subroutine.

ADDRESS Redirections

ANSI defines redirections for t®DDRESStatement. This feature has been missing fRegina
until version 3.0; although you have had the chance to redirect input and output dyl&€»g
and >FIFO modifiers on command strings.

These command modifiers still exist and have a higher precedence thd¥Shdefined
redirections. Note, thatl FO andFIFO can be used by the newer redirection system. But, first of
all, some examples show the usagdPDDRESSedirections.

ADDRESS SYSTEM "sort" WITH INPUT STEM names. OUTPUT STEM
names.

ADDRESS SYSTEM "myprog" WITH INPUT STEM somefood. OUTPUT
STREAM 'prg.out' ERROR STEM oops.

ADDRESS PATH WITH INPUT FIFO " OUTPUT NORMAL
ADDRESS SYSTEM WITH INPUT FIFO " OUTPUT FIFO " ERROR NORMAL
ADDRESS SYSTEM "fgrep 'bongo™ WITH INPUT STREAM 'feeder’

The first command instructs the default command line interpreter to call thamroghiedsort

The input for the command is read from the stemrmes(note the trailing period) and the output is
sent back to the same stem variable after the command terminates. Thus, botheritiggabout
implementation of a fast sort algorithm for a stem is as simple as cafiragyigam which can
actually do the sort.

A program calleanyprogis called in the second case. The input is fetched from thesstefood.
(again note the trailing period), and the standard output of the program is redirectestrieettne
called prg.out. Any generated error messages via the standard error streashirected to the stem
calledoops.

In the third example, the redirection behavior of the environment PATH is changed tdura! f
uses. The input for all commands addressed to this environment is fetched from the stacklard s
in FIFO order. After each call the stack will be flushed. The output is sent to thet defguit

stream, which is the current console in most cases. The behavior for error messsagebanged.

The fourth example allows pipes between commands in the environment; SYSTEM daurall f
uses. The input is fetched from the default stack and sent to the default staclchftememand.
The stack itself is flushed in between. Each executed program will write tarsogiehich is the
input to the next called command. The error redirection is set or set back to théah#elor of
writing to the standard error stream.

The fifth example relates to the fourth. The default stack has to be filled withtsogiaitially.

25

This is done by the redirection to the stream “feeder” while writing the output frfrépcommand
to the default FIFO as declared in example four. After this, a single line witiplesort
command will sort the output égrepand place it in the default stack. You can fetch the final
output of your pipe cascade by reading the stack contents. This statement overwgte$ them
rules of the fourth example temporarily.

You can see the powerful possibilities of the redirection command. The disadvantegess of a
direct overview of what happens after a permanent redirection command has executed.

Its now the time to show you all rules and semantics of the redirection.
Rules for the redirection by the keyword ~ WITH of the ADDRESStatement:

Every environment has its own defardtlirection set

Everyredirection setonsists of three independeatlirection elementstandard input

(INPUT), standard outpuQUTPUT and standard erroERROIR Users with some experiences
with Unix, DOS & Windows or OS/2 may remember the redirection commands of the command
line interpreter which can redirect each of the streams, too. This is neardyrtae s
Eachredirection elemengtarts with the program-startup streams giveREXX when invoking
the interpreter. These can be reset to the startup default by specifying theratd@RMAIlfor
eachredirection element

The sequence of thredirection elements irrelevant.

You can specify eactedirection elemenbnly once per statement.

Redirections can be intermixed. This means you can let bo®uR®UTand theeERROR
redirection point to the same "thing". The data from the different channels will be thet t
assigned "thing" as they arriv&NSI's point of view isn't very clear at this point. They state to
keep the output different for files and put them together after the called progrsimedinvhile

the data shall be mixed at once when using stems.

Regina always mixes the fetched data at once if possible.

Redirections from and to the same source/destination try to keep the data corfsibeent. |
INPUT/OUTPUTpair or thdNPUT/ERRORPRair points to the same destination, the content of
the input or output channel is buffered so that writing to the output won't overwrite the input.
A redirection elemenis entered by its name (el§lPUT), a redirection processor (e.g.
STREAMand a destination symbol (e.g. OUT_FN) following the rules to the redirection
processor. This means that you have to enter a dot after a symbol name for a stem,nobainy sy
for the rest of the processors, in which case the content of the symbol is used as for normal
variables.

Both OUTPUTandERRORstreams can replace or append the data to the destination. Simply
append eitheAPPENDor REPLACEmMmediately after th©@UTPUTor ERROReywords.
REPLACEHS the default.

The destination is checked or cleared prior to the execution of the command.

ANSI defines two redirection processo8EMandSTREAMThe processoisiFO andFIFO

are allowed extensions to the standard.

The processa8 TEMuses the content of the symldeistination.to access the count of the
currently accessible linedestinationis the given destination name, of coudestination.Omust
be filled with a whole, non-negative number in terms of the DATATYPE built-in functiooh Ea
of n lines can be addressed by appending the whole numbersotettee stem. Example:
STEMfoo. is given, FOO.0 contains 3. This indicates three content lines. They are the contents of
the symbols FOO.1 and FOO.2 and FOO.3 .

The processoB TREAMises the content of the symlo@stinationto use a stream as known in
the STREAM built-in function. The usage is nearly equivalent to the commands LINEIN

26

destinationor LINEOUT destinationfor accessing the contents of the file. An empty variable
(content set to the empty string) as the content afiéséinationis allowed and indicates the
default input, output or error streams given toREeXX program. This is equivalent to the
NORMAL keyword.

The processdrlFO uses the content of the symldi@stinationas a queue name. New lines are
pushed in last-in, first-out order to the queue. An erdpstinationstring is allowed and

describes the default queue. Lines are fetched from the queue if this processoras thheed f
INPUT stream.

The processdfIFO uses the content of the symbaistinationas a queue name. New lines are
pushed in first-in, first-out order to the queue. An engastinationstring is allowed and

describes the default queue. Lines are fetched from the queue if this processoras thsed f
INPUT stream.

OnINPUT, all the data in the input stream is read up to either the end of the input data or until
the called process terminates. The latter one may be determined after tgethegnput stream

of the called process with unused data. Thus, there is no way to say if data is used or not. This
isn't a problem wittSTEM. But all file related sequential access objects includiR@® s and

FIFOs may have lost data between two calls. Imagine an inpuSMBREANIwith three lines:

One line
DELIMITER
Second line

and furthermore two processgsandp2 calledWITH INPUT STREAMf with f containing the
three lines abovel reads lines up until a line containing DELIMITER artiprocesses the

rest. It is very likely that the second process won't fetch any line becauseéme stay be
processed bREXX, andREXX may has put one or more lines ahead into the feeder pipe to the
process. This might or might not happen. It is implementation dependeRegith shows this
behavior. The input object is checked for existence and if it is properly set up before the
command is started.

In short:INPUT may or may not use the entire input.

Both OUTPUTandERROPbDbjects are checked for being properly set up just before the
command startfREPLACHSs implemented as a deletion just before the command starts. Note
thatANSI doesn't forc&TEMIines to be dropped in case of a replacement. A big stem with
thousands of lines will still exist after a replacement operation if thedceimmand doesn't
produce any output. Just destination.O is set to 0.

The redirection of commands is a mystery to many people and it will continue be. You carllthank a
the people who designed stacks, queues, pipelines and all the little helper utilitveiscbfsa
kitchen of process management.

2.4.2The ARG Instruction
ARG|[tenplate]l[,] tenplate]...];

The ARGinstruction will parse the argument strings at the current procedural levdienteniplate.
Parsing will be performed in upper case mode. This clause is equivalent to:

PARSE UPPER ARG [tenpl ate];

For more information, see tiARSEInstruction. Note that this is the only situation where a
multistring template is relevant.

27

Example: Beware assignments

The similarity betweeARGandPARSE UPPER ARGhas one exception. Suppose R SE
UPPER ARGChas an absolute positional pattern as the first element in the template, like:

parse upper arg =(foo) bar

This is not equivalent to ahRGinstruction, becaus@RGinstruction would become an assignment.
A simple trick to avoid this problem is just to prepend a placeholder penidad the pattern, thus
the equal sign~) is no longer the second token in the ERGinstruction. Also, unless the
absolute positional pattern is indirect, the equal sign can be removed without changiegriireggm
of the statement.

2.4.3The CALL Instruction

CALL= routine [paraneter][, [paraneter]..];
{ON | OFF } condi tion [NAME | abel];

The CALL instruction invokes a subroutine, nameddaytine, which can be internal, built-in, or
external; and the three repositories of functions are searchexlifme in that order. The token
routine must be either a literal string or a symbol (which is taken literally). Howdveutineis a
literal string, the pool of internal subroutines is not searched. Note that someeietsrpray have
additional repositories of labels to search.

In aCALL instruction, eaclparameters evaluated, strictly in order from left to right, and passed as
an argument to the subroutine.pArametemight be left out (i.e. an empty argument), which is not
the same as passing the nullstring as argument.

Users often confuse a parameter which is the nullstring with leaving out the pardnosvever,
this is two very different situations. Consider the following calls to the builtnntion
TRANSLATE():

say translate(‘abcDEF') /* says ABCDEF */

say translate('abcDEF',"") /* says abcDEF */

say translate('abcDEF',,"") /*says' '*/
The TRANSLATE() function is able to differ between receiving the nullstring (i.e. a defined string
having zero length), from the situation where a parameter was not specified (iued¢fieed

string). SinceTRANSLATE() is one of the few functions where the parameters' default values are
very different from the nullstring, the distinction becomes very visible.

28

Breakage Alert!!
Prior to Version 3.1 of Regina, the following syntactical use oOAEL instruction was valid:

CALL routine'('[paranmeter][, [paraneter]..]1"";

e.g.
call myfunc(‘abcDEF',,")

This syntax is not allowed BANSI and use of this syntax will now result in Error 37.1. There
exists an option introduced Regina 3.3 which reenables a similar behaviour, although
parameters with individual parentheses are allowed since 3.1. The option is called
CALLS_AS_FUNCS and should

be enabled using the environment variable called REGINA_OPTIONS. See the aesofifite
instructionOPTIONSfor further details.

Breakage Alert!!

For theCALL instruction, watch out for interference with line continuation. If there arenaili
commas, it might be interpreted as line continuation. Appending a semicolon where afpi®pria
common solution to make the desired bahaviour obviousCKIa. instruction uses line
continuation between two parameters, two commas are needed: one to separate #terpasauth
one to denote line continuation.

A number of settings are stored across internal subroutine calls. An internal sugbvalitinherit
the values in effect when the call is made, and the settings are restored amegiefisubroutine.
These settings are:

» Conditions traps, see chap@onditions.

* Current trapped condition, see sectionS.

* NUMERIGsettings, see secticdumeric.
 ADDRES&nvironments, see sectidwldress.

« TRACEmMode, see sectiofrace and chapter [not yet written].
« The elapse time clock, see sectiome.

Also, theOPTIONSsettings may or may not be restored, depending on the implementation; Regina
restores the curre@PTIONS Note that external subroutines don't inherit the cu@EEIONSas
internal subroutines do. See the sec@TIONSfor a detailed explanation. Further, a number of
other things may be saved across internal subroutines. The effect on variablesrallectcbgtthe
PROCEDURIBstruction in the subroutine itself. The state oDdllloops will be preserved during
subroutine calls.

Example: Subroutines and trace settings

Subroutines can not be used to set various settings like trace s@ttidERICsettings, etc. Thus,
the following code will not work as intended:

29

say digits() /* says 9, maybe */
call inc_digits

say digits() /* still says 9 */
exit

inc_digits:
numeric digits digits() + 1
return

The programmer probably wanted to call a routine which incremented the precisighroéad
operations. However, since the settingNfMERIC DIGITS is saved across subroutine calls, the
new value set imc_digits is lost at return from that routine. Thus, in order to work correctly,
theNUMERIQnstruction must be located in the main routine itself.

Built-in subroutines will have no effect on the settings, except for explicitigetbtide effects.
Nor will external subroutines change the settings. For all practical purposesermaksubroutine
is conceptually equivalent to reinvoking the interpreter in a totally separatedqroce

If the name of the subroutine is specified by a literal string, then the name wittdbassss; it will
not be converted to upper case. This is important because a routine which contains lower case
letters can only be invoked by using a literal string as the routine nameGalthanstruction.

Example: Labels are literals

Labels are literal, which means that they are neither tail-substituted notwtatidor the value of
the variable. Further, this also means that the settiNgJMERIC DIGITS has no influence on the
section of labels, even when the labels are numeric symbols. Consider the following code:

call 654.32
exit

654.321.:
say here
return

654.32:
say there
return

In this example, the second of the two subroutines are always chosen, independent aighe setti
NUMERIC DIGITS. Assuming thaNUMERIC DIGITS are set to 5, then the number 654.321 is
converted to 654.32, but that does not affect labels. Nor would a sta@Aldn6.5432E2 call

the second label, even though the numeric value of that symbol is equal to that of one of the labels.

The called subroutines may or may not return data to the caller. In the calling rdwgtispetial
variableRESULTwill be set to the return value or dropped, depending on whether any data was
returned or not. Thus, tl@ALL instruction is equivalent to calling the routine as a function, and
assigning the return value RESULT except when theoutine does not return data.

In REXX, recursive routines are allowed. A minimum number of 100 nested internal and external
subroutine invocations, and support for a minimum of 10 parameters for each call are required by

30

REXX. See chaptdrimits for more information concerning implementation limits.

When the token followin@€ALL is eitherONor OFF, theCALL instruction is not used for calling a
subroutine, but for setting up condition traps. In this case, the third token of the clause must be the
name of a condition, which setup is to be changed.

If the second token wa3N then there can be either three or five tokens. If the five token version is
used, then the fourth token mustNv@MEand the fifth token is taken to be the symbolic name of a
label, which is the condition handler. This name can be either a constant string, or a syimchol, w
is taken literally. Whe®FFis used, the named condition trap is turned off.

Note that theONandOFFforms of theCALL instruction were introduced in TRL2. Thus, they are
not likely to be present on older interpreters. More information about conditions and conditson tra
are given in a chapt&onditions.

2.4.4The DO/END Instruction

DO|[repetitor][conditional];
[clauses]
END[synbol];

repetitor := synbol = expri [TO exprt]
[BY exprb][FOR exprf]
exprr
FOREVER

conditional :=WHILE exprw
UNTIL expru

The DOENDiInstruction is the instruction used for looping and grouping several statements into one
block. This is a multi-clause instruction.

The most simple case is when there isepetitor or conditional in which case it works like
BEGINENDIn Pascal of ...} in C. l.e. it groups zero or moREXX clauses into one conceptual
statement.

Therepetitor subclause controls the control variable of the loop, or the number of repetitions. The
exprr subclause may specify a certain number of repetitions, or you m&DEEVERO go on
looping forever.

If you specify the control variabeymbo] it must be a variable symbol, and it will get the initial
valueexpri at the start of the loop. At the start of each iteration, including the first, ibevill
checked whether it has reached the value specifiestfry At the end of each iteration the value
exprbis added to the control variable. The loop will terminate after at expstiterations. Note
that all these expressions are evaluated only once, before the loop is enteredrkiritbafion.

You may also specify NTIL or WHILE, which take a boolean expressitHILE is checked
before each iteration, immediately after the maximum number of iteration érapédormed.
UNTIL is checked after each iteration, immediately before the control variableemigted. It is
not possible to specify bothNTIL andWHILEin the sam@®OQinstruction.

The FOREVEReyword is only needed when there iscomditional and theepetitorwould also

31

be empty iFOREVERvas not specified. Actually, you could rewrite thi€€3 WHILE 1. The
two forms are equivalent, except for tracing output.

The subclauseBO, BY, andFORmay come in any order, and their expressions are evaluated in the
order in which they occur. However, the initial assignment must always comd fiest order may
affect your program if these expressions have any side effects. Howevers#iiis a problem,
since it is quite intuitive. Note that the counting of iterations, iRG&subclause has been

specified, is never affected by the settingNefMERIC DIGITS.

Example: Evaluation order

What may prove a real trap, is that although the value to which the control variablis is set
evaluated before any other expressions inmepetitor, it is assigned to the control variable after all
expressions in theepetitorhave been evaluated.

The following code illustrates this problem:

ctrl=1

do ctrl=f(2) by f(3) to f(5)
call f6

end

call f7

exit

f:
say ‘ctrl="ctrl ‘arg="arg(1)
return arg(1)

This code produces the following output:

ctrl=1 arg=2
ctrl=1 arg=3
ctrl=1 arg=5
ctrl=2 arg=6
ctrl=5 arg=6
ctrl=8 arg=7

Make sure you understand why the program produces this output. Failure to understand this may
give you a surprise later, when you happen to write a conigarstruction, and do not get the
expected result.

If the TOexpression is omitted, there is no checking for an upper bound of the expressioBYIf the

subclause is omitted, then the default increment of 1 is used.A{XRsubclause is omitted, then
there is no checking for a maximum number of iterations.

Example: Loop convergence For the reasons just expl ained, the instruction:

32

do ctrl=1
nop /* and other statements */
end

will start with CTRLbeing 1, and then iterate through 2, 3, 4, ..., and never terminate except by
LEAVE RETURNSIGNAL, orEXIT .

Although similar constructs in other languages typically provokes an overflow atpsnnte
something "strange" happensREXX. Whenever the value ofrl becomes too large, the
incrementation of that variable produces a result that is identical to the old vatde aofFor
NUMERIC DIGITS set to 9, this happens whetnl becomes 1.00000000E+9. When adding 1 to
this number, the result is still 1.00000000E+9. Thus, the loop "converges" at that value.

If the value oNUMERIC DIGITS is 1, then it will "converge" at 10, or 1E+1 which is the
"correct” way of writing that number unddtJMERIC DIGITS 1 . You can in general disregard
loop "convergence", because it will only occur in very rare situations.

Example: Difference between UNTIL and WHILE

One frequent misunderstanding is thatWidILE andUNTIL subclauses of tHeGENDinstruction
are equivalent, except thatHILE is checked before the first iteration, wHUITIL is first checked
before the second iteration.

This may be so in other languages, buREXX. Because of the order in which the parts of the loop
are performed, there are other differences. Consider the following code:

count=1
do i=1 while count \=5
count =count + 1

end
say i count
count=1

do i=1 until count=5

count = count + 1
end
say i count

After the first loop, the numbers 6 and 5, while in the second loop, the numbers 5 and 5 are written
out. The reason is thaVdHILE clause is checked after the control variable of the loop has been
incremented, but adNTIL expression is checked before the incrementation.

A loop can be terminated in several wayRBTURNr EXIT instruction terminates all active

loops in the procedure levels terminated. Furth& GINAL instruction transferring control (i.e.
neither aSIGNAL ON nor SIGNAL OFF) terminates all loops at the current procedural level. This
applies even to "implicitSIGNAL instructions, i.e. when triggering a condition handler by the
method ofSIGNAL. A LEAVE instruction terminates one or more loops. Last but not least, a loop
can terminate itself, when it has reached its specified stop conditions.

Note that theSIGNAL instruction terminates also non-repetitive loops (or raD&ENDpairs),

33

thus after arBIGNAL instruction, you must not execute BNDinstruction without having executed
its correspondin@Ofirst (and after th&IGNAL instruction). However, as long as you stay away
from theEND, it is all right according to TRL to execute code within a loop without having
properly activated the loop itself.

Note that on exit from a loop, the value of the control variable has been incremented ortbe afte
last iteration of the loop, if the loop was terminated by\iltILE expression, by exceeding the
number of max iterations, or if the control variable exceeded the stop value. Howeventtbk ¢
variable has the value of the last iteration if the loop was terminated byfhik. expression, or by
an instruction inside the loop (elg=AVE SIGNAL, etc.).

The following algorithm iIrREXX code shows the execution obD&®instruction, assuming that
expri, exprt exprh exprf exprw expru andsymbolhave been taken from the syntax diagrard@f

@expri= expri
@exprt= exprt
@exprb = exprb
@exprf = exprf
@iters=0

synbol = @expri

start_of_loop:
if synbol > @extrt then signal after_loop
if @iters > @exprf then signal after_loop
if\ expr wthen signal after_loop
i nstructions
end_of loop:
if expru then signal after_loop
synbol = synbol + @exprb
signal start_of _loop

after_loop:

Some notes are in order for this algorithm. First, it useSIG&IAL instruction, which is defined to
terminate all active loops. This aspect of H&NAL instruction has been ignored for the purpose
of illustrating theDQ and consequently, the code shown above is not suitable for nested loops.
Further, the order of the first four statements should be identical to the order in €spanding
subclauses in thepetitor. The code has also ignored thatWielILE and thedJNTIL subclauses

can not be used in the sa@®instruction. And in addition, all variables starting with the at sign
(@, are assumed to be internal variables, private to this particular loop. Wighnctions a
LEAVEinstruction is equivalent tsignal after_loop , While aITERATE instruction is
equivalent tesignal end_of loop

2.4.5The DROP Instruction
DROPsynbol [synbol ...];

The DROHNstruction makes the namedriables uninitialized, i.e. the same state that they had at
the startup of the program. The list of variable names are processed stinthefirto right and
dropped in that order. Consequently, if one of the variables to be dropped is used in a tail of
another, then the order might be significant. E.g. the followingdR@Hnstructions are not

34

equivalent:

bar ="'a’
drop bar foo.bar /* drops 'BAR' and 'FOO.BAR' */
bar ="'a’

drop foo.bar bar /* drops 'FOO.a' and 'BAR'

Thevariableterms can be either a variable symbol or a symbol enclosed in parentheses. The former
form is first tail-substituted, and then taken as the literal name of the symbaiitodped. The

result names the variable to drop. In the latter form, the value of the variable syrnumthies
parentheses is retrieved and taken as a space separated list of symbols. Eaelsginthels is tail-
substituted (if relevant); and the result is taken as the literal name of lalevaoide dropped.

However, this process is not recursive, so that the list of names referred talyndaeaot itself

contain parentheses. Note that the second form was introduced in TRL2, mainly in order to make
INTERPRETunnecessary.

In general, things contained in parentheses can be anyREXX expression, but this does not
apply to theDROPPARSE andPROCEDURI&structions.

Example: Dropping compound variables

Note a potential problem for compound variables: when a stem variable is set, it wél aot
default value, rather it will assign "all possible variables" in that stel®ectioin at once. So

dropping a compound variable in a stem collection for which the stem variable has bedhsst, wi
that compound variable to the original uninitialized value; not the value of the steme/aBieél
sectionAssign for further notes on assignments. To illustrate consider the code:

foo. = 'default’
drop baz bar foo.bar
say foo.bar foo.baz /* says 'FOO.BAR default' */

In this example, th8AY instruction writes out the value of the two compound varigi@9.BAR
andFOO.BAZ When performing tail-substitution for these, the interpreter finds thaB#d&and
BAZ are uninitialized. FurtheFEOO.BARhas also been made uninitialized, wik@O.BAZ has the
value assigned to it in the assignment to the stem variable.

Example: Tail-substitutionin DROP

For instance, suppose that the varidiEOhas the valubar . After being dropped;OOwill have
its uninitialized value, which is the same as its naf@O If the variable to be dropped is a stem
variable, then both the stem variable and all compound variables of that stem becoméaeunitia

bar =123
drop foo.bar /* drops 'FOO.123' */

Technically, it should be noted that some operations involving dropping of compound variables can
be very space consuming. Even though the standard does not operate with the term "default value"
for the value assigned to a stem variable, that is the way in which it is mostdikedy

implemented. When a stem is assigned a value, and some of its compound variables are dropped

35

afterwards, then the interpreter must use memory to store references toahlevaropped. This
might seem counterintuitive at first, since dropping ought to release memorypcatalnore.

There is a parallel betwe®@ROPandPROCEDURE EXPOSHlowever, there is one important
difference, althougPROCEDURE EXPOSEill expose the name of a variable enclosed in
parentheses before starting to expose the symbols that variable refers $aydhsoi foDROP If
DROPad mimicked the behavior BROCEDURE EXPOSE this matter, then the whole purpose
of indirect specifying of variables DROPRwvould have been defeated.

Dropping a variable which does not have a value is not an error. There is no upper limit on the
number of variables that can be dropped inBRORlause, other than restrictions on the clause
length. If an exposed variable is dropped, the variable in the caller is dropped, but the variable
remains exposed. If it reassigned a value, the value is assigned to a variablaliertheutine.

2.4.6The EXIT Instruction
EXIT[expr];

Terminates th&@EXX program, and optionally returns the expressixprto the caller. If specified,
exprcan be any string. In some systems, there are restrictions on the range of vadifovahes

expr. Often the return expression must be an integer, or even a non-negative integer. This is not
really a restriction on thREXX language itself, but a restriction in the environment in which the
interpreter operates, check the system dependent documentation for more information.

If expris omitted, nothing will be returned to the caller. Under some circumstancesrtbailagal,
and might be handled as an error or a default value might be useXThenstruction behaves
differently in a "program” than in an external subroutine. In a "program”, it retantiotto the
caller e.g. the operating system command interpreter. While for an externa raueturns

control to the callindREXX script, independent of the level of nesting inside the external routine
being terminated.

RETURN EXIT
At the main level of the program Exits program Exits program
At an internal subroutine level of the = Exits subroutine, and returns Exits program
program to caller
At the main level of an external Exits the external subroutine Exits the external
subroutine subroutine
At a subroutine level within an externaExits the subroutine, returningExits the external
subroutine to calling routine within subroutine

external subroutine script

Actionsof RETURMNINd EXIT Instructions

If terminating an external routine (i.e. returning to the calREgXX script) any legaREXX string
value is allowed as a return value. Also, no return value can be returned, and in both cases, this
information is successfully transmitted back to the calling routine. In the cademdtion call (as
opposed to a subroutine call), returning no value will r&BTAXcondition {44}. The table

above describes the actions taken byERET andRETURNRNSstruction in various situations.

36

2.4.7The IF/THEN/ELSE Instruction

IF expr [;] THEN [;] st at enent
[ELSE [;] st at enent]

This is a normal if-construct. First the boolean expressipnis evaluated, and its value must be
eitherO or 1 (everything else is a syntax error which raiS¥NTAXcondition number {34}).
Then, the statement following eithBHENor ELSE is executed, depending on whetbhgprwas1l
or 0, respectively.

Note that there must come a statement at#ENandELSE. It is not allowed to put just a null-
clause (i.e. a comment or a label) there. If you wanTHENor ELSE part to be empty, use the
NOPinstruction. Also note that you can not directly put more than one statemefit-iRDr
ELSE you have to package them iD®ENDpair to make them a single, conceptual statement.

After THEN afterELSE, and befor&@ HEN you might put one or more clause delimiters (newlines
or semicolons), but these are not required. AlsoEtHeE part is not required either, in which case
no code is executedeixpris false (evaluates ®@). Note that there must also be a statement
separator beforELSE, since the that statement must be terminated. This also applies to the
statement afteELSE However, sincstatemenincludes a trailing clause delimiter itself, this is
not explicitly shown in the syntax diagram.

Example: Dangling ELSE

Note the case of the "danglingLSE. If anELSE part can correctly be thought of as belonging to
more than on#~ /THENIinstruction pair, it will be parsed as belonging to the closest (i.e.
innermost)F instruction:

parse pull foo bar
if foo then
if bar then
say 'foo and bar are true'
else
say 'one or both are false’

In this code, th&LSE instruction is nested to the innermdst, i.e. tolF BAR THEN .

2.4.8The INTERPRET Instruction
INTERPRET expr ;

TheINTERPRETInstruction is used to dynamically build and exed®iEXX instructions during
run-time. First, it evaluates the expresseompr, and then parses and interprets the result as a
(possibly empty) list oREXX instructions to be executed. For instance:

foo = 'hello, world'
interpret 'say "foo'!"

executes the stateme®AY "hello, world!" after having evaluated the expression following

INTERPRET This example shows several important aspedNDBERPRET. Firstly, it's very easy
to get confused by the levels of quotes, and a bit of caution should be taken to nest the quotes

37

correctly. Secondly, the use ¥ TERPRETdoes not exactly improve readability.

Also, INTERPRETwill probably increase execution time considerably if put inside loops, since the
interpreter may be forced to reparse the source code for each iteration. Manging®R&XX
interpreters (and in particul®&EXX compilers) has little or no support iNTERPRET. Since

virtually anything can happen inside it, it is hard to optimize, and it often invalids@®pisons in
other parts of the script, forcing it to ignore other possible optimizations. Thus, you shodld avoi
INTERPRETwhen speed is at a premium.

There are some restrictions on which statements can be indid@EBRPRETstatement. Firstly,
labels cannot occur there. TRL states that they are not allowed, but you may find dna¢ in s
implementations labels occurring there will not affect the label symbol délie program being
run. Consider the statement:

interpret 'signal there; there: say hallo’
there:

This statement transfers control to the lalldEREIN the program, never to titHERElabel inside
the expression of tiN TERPRETInstruction. Equivalently, an§IGNAL to a labeTHERE
elsewhere in the program never transfers control to the label insitdtRR PRETinstruction.
However, labels are strictly speaking not allowed inENEERPRETstrings.

Example: Self-modifying Program

There is an idea for a self-modifying progranRiBXX which is basically like this:

string ="
do i=1 to sourceline()

string = string ';' sourceline(i)
end

string = transform(string)
interpret string
exit

transform: procedure
parse arg string
/* do some transformation on the argument */
return string

Unfortunately, there are several reasons why this program will not w&EXX, and it may be
instructive to investigate why. Firstly, it uses the [ARANSFORMvhich is not allowed in the
argument tdNTERPRET The interpret will thus refer to tlERANSFORNKbutine of the
"outermost" invocation, not the one "in" tidTERPRET string.

Secondly, the program does not take line continuations into mind. WorSOQWRCELINE()
built-in function refers to the data of the main program, even inside the code executed by the
INTERPRETInstruction. Thirdly, the program will never end, as it will nest itself up till an
implementation-dependent limit for the maximum number of ndBIEERPRETIinstructions.

38

In order to make this idea work better, temporary files should be used.

On the other hand, loops and other multi-clause instructiondHikkendSELECToccur inside an
INTERPRETexpression, but only if the whole instruction is there; you can not start a structured
instruction inside aiNTERPRETInstruction and end it outside, or vice-versa. However, the
instructionSIGNAL is allowed even if the label is not in the interpreted string. Also, the
instructiond TERATE andLEAVEare allowed in aiNTERPRET, even when they refer to a loop
that is external to the interpreted string.

Most of the timeJNTERPRETIs not needed, although it can yield compact and interesting code. If
you do not strictly neetNTERPRET, you should consider not using it, for reasons of compatibility,
speed, and readability. Many of the traditional usdBI6ERPREThave been replaced by other
mechanisms in order to decrease the necesdilyT&ERPRET, e.g. indirect specification of

variables irEXPOSEandDRORthe improved/ALUE() built-in function, and indirect

specification of patterns in templates.

Only semicolon;() is allowed as a clause delimiter in the string interpreted b BERPRET
instruction. The colon of labels can not be used, since labels are not allowed. Nor doesespEcifi
of-line character sequences have any defined meaning there. However, mostensgppoeably
allow the end-of-line character sequence of the host operating system asi\atetaase

delimiters. It is interesting to note that in the context of MEERPRETinstruction, an implicit,
trailing clause delimiter is always appended to the string to be interpreted.

2.4.9The ITERATE Instruction
ITERATE[synbol];

ThelTERATE instruction will iterate the innermost, active loop in whichltIReRATE instruction
is located. Isymbolis specified, it will iterate the innermost, active loop haaywgbolas control
variable. The simplBOENDstatement without eepetitorandconditionalis not affected by
ITERATE. All active multiclause structureBQ SELECT, andIF) within the loop being iterated
are terminated.

The effect of anTERATE is to immediately transfer control to tB&Dstatement of the affected
loop, so that the next (if any) iteration of the loop can be started. It only affects loopscarnréinge
procedural level. All actions normally associated with the end of an iteratiorfasrped.

Note thatsymbolmust be specified literally; i.e. tail substitution is not performed for compound
variables. So if the control variable in B®instruction iSFOO.BAR thensymbolmust use
FOO.BARIf it is to refer to the control variable, no matter the value oBilsBvariable.

Also note thatTERATE (andLEAVE are means of transferring control in the program, and
therefore they are related 8GNAL, but they do not have the effect of automatically terminating
all active loops on the current procedural level, wiS36BNAL has.

Two types of errors can occur. Eitlegmboldoes not refer to any loop active at the current

procedural level; or (ifymbolis not specified) there does not exist any active loops at the current
procedural level. Both errors are reporte@#TAXcondition {28}.

39

2.4.10The LEAVE Instruction
LEAVE [synbol];

This statement terminates the innermost, active logyntibolis specified, it terminates the
innermost, active loop havirgymbolas control variable. As for scope, syntax, errors, and
functionality, it is identical tdaTERATE, except thaLEAVEterminates the loop, whilfERATE
lets the loop start on the next iteration normal iteration. No actions normallystedogith the
normal end of an iteration of a loop is performed faEAVEinstruction.

Example: Iterating a simple DOEND

In order to circumvent this, a simdEJENDcan be rewritten as this:

if foo then do until 1
say 'This is a simple DO/END group'
say 'but it can be terminated by’
leave
say 'iterate or leave'

end

This shows howTERATE has been used to terminate what for all practical purposes is a simple
DOENDgroup. EithefTERATE or LEAVEcan be used for this purpose, althougAVEis
perhaps marginally faster.

2.4.11The NOP Instruction
NOP :

TheNOPiInstruction is the "no operation" statement; it does nothing. Actually, that is nbt total
true, since th&lOPinstruction is a "real" statement (and a placeholder), as opposed to null clauses.
I've only seen this used in two circumstances.

e After anyTHENor ELSE keyword, where a statement is required, when the programmer wants
an emptyTHENor ELSE part. By the way, this is the intended us&&fP Note that you can
not use a null clause there (label, comment, or empty lines), since these are daaparse
"independent” statements.

* | have seen it used as "trace-bait". That is, when you start interactive lieasggtement
immediately after th& RACEinstruction will be executed before you receive interactive control.
If you don't want that to happen (or maybe TRRACEInstruction was the last in the program),

you need to add an extra dummy statement. However, in this context, labels and comments can

be used, too.

2.4.12The NUMERIC Instruction

NUMERIC DIGITS [expr];
FORM [SCIENTIFIC | ENGINEERING | [VALUE | expr];
FUZZ[expr];

REXX has an unusual form of arithmetic. Most programming languages use integer and floati
point arithmetic, where numbers are coded as bits in the computers native memory woelserH

40

REXX uses floating point arithmetic of arbitrary precision, that operates on sepgsenting the
numbers. Although much slower, this approach gives lots of interesting functionalityssUnle
number-crunching is your task, the extra time spent by the interpreter is gegenallacceptable
and often almost unnoticeable.

TheNUMERIGstatement is used to control most aspects of arithmetic operations. It has three
distinct forms:DIGITS , FORMandFUZZ which to choose is given by the second token in the
instruction:

DIGITS
Is used to set the number of significant digits in arithmetic operations. Thevaltia is 9,
which is also the default valueakpris not specified. Large values DIGITS tend to
slow down some arithmetic operations considerably. If spec#iqat,must be a positive
integer.

FUZZ

Is used in numeric comparisons, and its initial and default value is 0. Normally, two numbers

must have identical numeric values for a number of their most significant digiteintor
be considered equal. How many digits are considered is determibdGIRS . If DIGITS
is 4, then 12345 and 12346 are equal, but not 12345 and 12356. HowevefrUidaan

non-zero, then only theIGITS minusFUZZ most significant digits are checked. E.qg. if
DIGITS is 4 andFUZZ are 2, then 1234 and 1245 are equal, but not 1234 and 1345.

The value foFUZZ must be a non-negative integer, and less than the vaRI&OTS .

FUZZis seldom used, but is useful when you want to make comparisons less influenced by

inaccuracies. Note that using with values0ZZ that is close t®IGITS may give highly
surprising results.
FORM

Is used to set the form in which exponential numbers are written. It can be set to either
SCIENTIFIC or ENGINEERING The former uses a mantissa in the range 1.000... to
9.999..., and an exponent which can be any integer; while the latter uses a mantissa in the
range 1.000... to0 999.999..., and an exponent which is dividable by 3. The initial and default

setting iISSCIENTIFIC . Following the subkeyworBORMmay be the subkeywords
SCIENTIFIC andENGINEERING or the subkeywordALUE In the latter case, the rest
of the statement is considered an expression, which will evaluate toSS@HeENTIFIC or
ENGINEERING However, if the first token of the expression followWM§LUEis neither a
symbol nor literal string, then théALUEsubkeyword can be omitted.

The setting oFORMhever affects the decision about whether to choose exponential form or normal

floating point form; it only affects the appearance of the exponential form oncertimatbds been
selected.

Many things can be said about the usefulne$3Ja&Z My impression is that it is seldom used in
REXX programs. One problem is that it only addresses relative inaccuracy: i.e. thratiles
value must be within a certain range, that is determined by a percentage ofdhedhrg. Often
one needs absolute inaccuracy, e.g. two measurements are equal if their diffierdase than a
certain absolute threshold.

Example: Simulating relative accuracy with absolute accuracy

41

As explained abovdREXX arithmetic has only relative accuracy, in order to obtain absolute
accuracy, one can use the following trick:

numeric fuzz 3
if a=b then

say 'relative accuracy’
if abs(a-b)<=500 then

say 'absolute accuracy’

In the firstlF instruction, ifAis 100,000, then the range of valuesBawhich makes the
expression true is 99,500-100,499, i.e. an inaccuracy of about +-2008a¢fthe value 10,000,000,
thenB must be within the range 9,950,000-10,049,999; i.e. an inaccuracy of about +-50,000.

However, in the secon# instruction, assumingis 100,000, the expression becomes true for
values ofB in the range 99,500-100,500. Assuming thé& 10,000,000, the expression becomes
true for values oB in the range 9,999,500-10,000,500.

The effect is largely to force an absolute accuracy for the second exampleferonhat the values
of A andB are. This transformation has taken place since an arithmetic subtraction fectetiaby
theNUMERIC FUZZ only numeric comparison operations. Thus, the effesl ¥ ERIC FUZZ

on the implicit subtraction in the operatienn the firstiF has been removed by making the
subtraction explicit.

Note that there are some minor differences in how numbers are rounded, but this can be fixed by
transforming the expression into something more complex.

To retrieve the values set flUMERIC you can use the built-in functioBdGITS() , FORM(),
andFUZZ() . These values are saved across subroutine calls and restored upon return.

2.4.13The OPTIONS Instruction
OPTIONS expr ;

The OPTIONSInstruction is used to set various interpreter-specific options. Its typicahreses
select certailREXX dialects, enable optimizations (e.g. time versus memory considerations), etc.
No standard dictates what may follow tBBTIONSkeyword, except that it should be a valid

REXX expression, which is evaluated. Currently, no specific options are required by anydstandar

The contents oéxpris supposed to be word based, and it is the intention that more than one option
can be specified in or@PTIONSInstruction. REXX interpreters are specifically instructed to
ignoreOPTIONSwords which they do not recognize. That way, a program can use run-time
options for one interpreter, without making other interpreters trip when they see thoss.djat
example oOPTIONmay be:

OPTIONS 4.00 NATIVE_FLOAT
The instruction might instruct the interpreter to start enforcing languadetl@@e and to use native
floating point numbers in stead of tREXX arbitrary precision arithmetic. On the other hand, it
might also be completely ignored by the interpreter.

It is uncertain whether modes selectedd®TIONSwill be saved across subroutine calls. Refer to

42

implementation-specific documentation for information about this.
Example: Drawback of OPTIONS

Unfortunately, the processing of td¥TIONSInstruction has a drawback. Since an interpreter is
instructed to ignore option-settings that it does not understand, it may ignore optionsrehich a
essential for further processing of the program. Continuing might cause aratddter, although
the behavior that would most precisely point out the problem is a complaint about the non-
supportedDPTION setting. Consider:

options ‘cms_ bifs'
pos = find(haystack, needle)

If this code fragment is run on an interpreter that does not suppernthéifs option setting,

then theOPTIONSInstruction may still seem to have been executed correctly. However, the
second clause will generally crash, sinceRi¢D() function is still not available. Even though the
real problem is in the first line, the error message is reported for the second line

2.4.14The PARSE Instruction

PARSE [option] [CASELESS | type[tenplate];
opti on ={UPPER | LOWER}
t ype ={ ARG | LINEIN | PULL | SOURCE | VERSION |
VALUE [expr]WITH | VAR synmbol }

The PARSEInstruction takes one or more source strings, and then parses them utengplaée
for directions. The process of parsing is one where parts of a source stringastedxnd stored
in variables. Exactly which parts, is determined by the patterns speciftethplate templatecan
be a number of patterns seperated by commas. A complete description of parsing s ghagber
[not yet written].

If the optionUPPER is specified, the input source strings are uppercased (based on locale) before
being split into the variables specified by template.

If the optionL OWER is specified, the input source strings are lowercased (based on locale) before
being split into the variables specified by template.

If CASELESS is specified, any character stringgemplatewill be matched against the source
strings irrespective of case (based on locale).

Which strings are to be the source of the parsing is defined bypisubclause, which can be any
of:

ARG.
The data to use as the source during the parsing is the argument strings given at the
invocation of this procedure level. Note that this is the only case where the source may
consist of multiple strings.

LINEIN.

Makes the®PARSEinstruction read a line from the standard input stream, as lif NtEIN
() built-in function had been called. It uses the contents of that line (after strippingleff e

43

of-line characters, if necessary) as the source for the parsing. This ssathellOTREADY
condition if problems occurred during the read.

PULL.
Retrieves as the source string for the parsing the topmost line from the staelstéak is
empty, the default action for reading an empty stack is taken. That is, it will rezole
line from the standard input stream, strip off any end-of-line characters (§saege and
use that string as the source.

SOURCE.
The source string for the parsing is a string containing information about how this iomocat
of theREXX interpreter was started. This information will not change during the execution
of aREXX script. The format of the string is:

system i nvocation fil enane

Here, the first space-separated wayktemis a single word describing the platform on
which the system is running. Often, this is the name of the operating system. The second
word describes how the script was invoked. TRL2 suggeststimatationcould be
COMMANDBUNCTION or SUBROUTINEDbut notes that this may be specific to VM/CMS.

Everything after the second word is implementation-dependent. It is indicatedstnau|d
refer to the name of tHREXX script, but the format is not specified. In practice, the format
will differ because the format of file names differs between various opesatstgms. Also,
the part after the second word might contain other types of information. Refer to the
implementation-specific notes for exact information.

VALUE expr WITH.
This form will evaluateexprand use the result of that evaluation as the source string to be
parsed. The tokewITH may not occur insidexpr, since it is a reserved subkeyword in this
context.

VAR symbol.
This form uses the current value of the named vargbteol(after tail-substitution) as the
source string to be parsed. The variable may be any variable symbol. If the variable is
uninitialized, then &NOTREADY¥ondition will be raised.

VERSION.
This format resembleéSOURCEDbut it contains information about the versiorREXX that
the interpreter supports. The string contains five words, and has the following format:

| anguage | evel date nonth year

Wherelanguageis the name of the language supported byRIBEXX interpreter. This may
seem like overkill, since the languagdriEXX, but there may be various different dialects

of REXX. The word can be just about anything, except for two restrictions, the first four
letters should b&EXX(in upper case), and the word should not contain any periods. [TRL2]
indicates that the remainder of the word (after the fourth character) can be wkadityp |

the implementation.

The second word is tHREXX language level supported by the interpreter. Note that this is
not the same as the version of the interpreter, although several implementationshisake
mistake. Strictly speaking, neither [TRL1] nor [TRL2] define the format of tbislynbut a
numeric format is strongly suggested.

44

The last three wordsléte month andyear) makes up the date part of the string. This is the
release date of the interpreter, in the default format dD&EE() built-in function.

Much confusion seems to be related to the second wdtAREE VERSION It describes the
language level, which is not the same as the version number of the interpreter. logact, m
interpreters have a version numbering which is independent BER& language level.
Unfortunately, several interpreters makes the mistake of using this field thgif own version
number. This is very unfortunate for two reasons; first, it is incorrect, and seconkes ina
difficult to determine whiclREXX language level the interpreter is supposed to support.

Chances are that you can find the interpreter version numB&RISE SOURCIBr the first word
of PARSE VERSION

The format of th&REXX language level is not rigidly defined, but TRL1 corresponds to the
language level 3.50, while TRL2 corresponds to the language level 4.00. Both implicitlyaniiea
that language level description is a number, and states that an implementatioanessertain
number "may be assumed to indicate a subset" of that language level. However, thistinest
taken to literally, since language level 3.50 has at least two features whiulssirgg in language
level 4.00 (theScan trace setting, and tHeROCEDURIgstruction that is not forced to be the first
instruction in a subroutine). [TRH:PRICE] gives a very good overview over the varying
functionality of different language levels REXX up to level 4.00.

With the release of th&NSI REXX Standard [ANSI] in 1996, thREXX language IS now rigidly
defined. The language level ANSI REXX is 5.00.Regina is now compliant to thANSI
Standard.

ThusPARSE VERSION will return 5.00.

Note that even though the information of B&RSE SOURCES constant throughout the execution
of aREXX script, this is not necessarily correct for B ®RSE VERSION If your interpreter
supports multiple language levels (e.g. throughQR&IONSInstruction), then it will have to
change the contents of tRARSE VERSIONSstring in order to comply with different language
levels. To some extent, this may also applPARSE SOURCEsince it may have to comply with
several implementation-specific standards.

After the source string has been selected byihesubclause in theARSEinstruction, this string
is parsed into theemplate The functionality of templates is common for #%RSE ARGand
PULL instructions, and is further explained in chapter [not yet written].

2.4.15The PROCEDURE Instruction

PROCEDURE [EXPOSE|[varref [varref ...]1]];
varref ={ synbol |(synbol)}

The PROCEDURIASstruction is used bREXX subroutines in order to control how variables are
shared among routines. The simplest use is without any parameters; then alefatereces to
variables in that subroutine refer to local variables. If there BROCEDURIAstruction in a
subroutine, then all variable references in that subroutine refer to variablesatlitigeroutine’'s
name space.

If the EXPOSEsubkeyword is specified too, then any references to the variables in the list following

45

EXPOSHefer to local variables, but to variables in the name space of the calling routine.
Example: Dynamic execution of PROCEDURE

The definition opens for some strange effects, consider the following code:

call testing

testing:
say foo
procedure expose bar
say foo

Here, the first reference #0OQis to the variabl&OO0in the caller routine's name space, while the
second reference €0OQis to a local variable in the called routine's name space. This is difficult to
parse statically, since the names to expose (and even when to expose them)iisedeterm
dynamically during run-time. Note that this use®&OCEDURIS allowed in [TRL1], but not in
[TRL2].

Several restrictions have been imposed®BROCEDURIA [TRL2] in order to simplify the
execution oPROCEDURE&Nd in particular, to ease the implementation of optimizing interpreters
and compilers).

» The first restriction, to which aREXX interpreters adhere as far as | know, is that each
invocation of a subroutine (i.e. not the main program) may ex@R@CEDUR& most once.
Both TRL1 and TRL2 contain this restriction. However, more tharPRR@CEDURIGstruction
may exist "in" each routine, as long as at most one is executed at each invocation of the
subroutine.

« The second restriction is that tRROCEDURIAstruction must be the first statement in the
subroutine. This restriction was introduced betwieEXX language level 3.50 and 4.00, but
several level 4.00 interpreters may not enforce it, since there is no breakageloviewy #l

There are several important consequences of this second restriction:

(1) it implicitly includes the first restriction listed above, since only oneungbn can be the first;
(2) it prohibits selecting one of several possPROCEDURIgAstructions; (3) it prohibits using the
same variable name twice; first as an exposed and then as a local variableassdmadlithe
example above; (4) it prohibits the customary useROCEDURENMINTERPRET, where the
latter is used to create a level of indirectness foPR®CEDURIastruction. This particular use
can be exemplified by:

testing:
interpret '‘procedure expose' bar

whereBARNholds a list of variable names which are to be exposed. However, in order to make this
functionality available without having to resortiddTERPRET, which is generally considered

"bad" programming style, new functionality has been add&ROCEDUREetween language

levels 3.50 and 4.00. If one of the variables in the list of variables is enclosed in parertiheses, t
means indirection. Then, the variables exposed are: (1) the variable enclosed in gEsp(@hthe

46

value of that variable is read, and its contents is taken to be a space-sepautedriele names;
and (3) all there variable names are exposed strictly in order from left to right

Example: Indirect exposing

Consider the following example:

testing:
procedure expose foo (bar) baz

Assuming that the variabBARholds the valuene two , then variables exposed are the
following: FOQ BAR ONE TWQOBAZ in that order. In particular, note that the varidb@Ois
exposed immediately before the variables which it names are exposed.

Example: Order of exposing

Then there is another fine point about exposing, the variables are hidden immedetéheaft
EXPOSEsubkeyword, so they are not initially available when the variable list is processed.
Consider the following code:

testing:
procedure expose bar foo.bar foo.baz baz

which exposes variables in the order specified. If the varBdkholds the valué23, then

FOO.123 is exposed as the second item, siBA®is visible after having already been exposed as
the first item. On the other hand, the third item will always expose the vaf@eBAZ no

matter what the value &AZis in the caller, since tH@AZ variable is visible only after it has been
used in the third item. Therefore, the order in which variables are exposed is impantérda. S
compound variable is used inside parentheses RREIICEDURIAStruction, then any simple
symbols needed for tail substitution must previously to have been explicitly exposed.r€dmga
to theDROHNstruction.

What exactly is exposing? Well, the best description is to say that it makesi@ uses (within
that procedural level) to a particular variable name refer to the variable iallihg coutine rather
than in the local subroutine. The implication of this is that even if it is dropped or it hadeewer
set, an exposed variable will still refer to the variable in the calling routinethAr important
thing is that it is the tail-substituted variable name that is exposed. So if yoe EXPOBAR and
BARNhas the valu&é23, then onlyFO0.123 is exposed, and continues to be so, evBARIater
changes its value to e234.

Example: Global variables

A problem lurking on neREXX users, is the fact that exposing a variable only exposes it to the
calling routine. Therefore, it is incorrect to speak of global variables, sincerthbleanight be
local to the calling routine. To illustrate, consider the following code:

47

foo = 'bar’
call subl
call sub2
exit

subl: procedure expose foo
say foo /* first says 'bar’, then 'FOQO" */
return

sub2: procedure
say foo /* says 'FOO' */
call subl
return

Here, the first subroutine call in the "main” program writesbaut, since the variablEOOIn
SUBL1lrefers to thé&-OOvariable in the main program's (i.e. its caller routine's) name space. During
the second call from the main progra®tyB2writes outFOQ since the variable is not exposed.
However,SUB2callsSUBJ, which exposeBOQ but that subroutine also writes ¢t®0O The

reason for this is th&XPOSEwvorks on the run-time nesting of routines, not on the typographical
structure of the code. So tRROCEDURIA SUB1 (on its second invocation) expo$e30to

SUB2 not to the main program as typography might falsely indicate.

The often confusing consequence of the run-time binding of variable names is that an exposed
variable ofSUB1can be bound to different global variables, depending on from where it was called.
This differs from most compiled languages, which bind their variables independemtynofvhere

a subroutine is called. In turn, the consequence of this iIREVK has severe problems storing a
persistent, static variable which is needed by one subroutine only. A subroutine needing such a
variable (e.g. a count variable which is incremented each time the subroutined} callst either
use an operating system command, or all subroutines calling that subroutine (andlitigeir ca
routines, etc.) must expose the variable. The first of these solution is very meledaon-

standard, while the second is at best troublesome and at worst seriously limigsitme m

practical size of ®EXX program. There are hopes thatWe_UE() built-in function will fix this

in future standards GREXX.

Another important drawback wiRROCEDURIE that it only works for internal subroutines; for
external subroutines it either do not work PlROCEDUREay not even be allowed on the main
level of the external subroutine. However, in internal subroutines inside the exténmailtees,
PROCEDURE allowed, and works like usual.

2.4.16The PULL Instruction
PULL[tenplate];

This statement takes a line from the top of the stack and parse it into the vanididgsmplate It
will also translate the contents of the line to uppercase.

This statement is equivalentPARSE UPPER PULL [t enpl at e] with the same exception as

explained for thARGinstruction. See chapter [not yet written] for a description of parsing and
chapterStack for a discussion of the stack.

48

2.4.17The PUSH Instruction
PUSH|[expr];

The PUSHIinstruction will add a string to the stack. The string added will either be the aéHudt
expr, or the nullstring iexpris not specified.

The string will be added to the top of the stack (LIFO), i.e. it will be the first lin@albr extracted
from the stack. For a thorough discussion of the stack and the methods of manipulating it, see
chapterStack for a discussion of the stack.

2.4.18The QUEUE Instruction
QUEUE [expr];

The QUEUERNSstruction is identical to theUSHinstruction, except for the position in the stack
where the new line is inserted. While ®#&SHputs the line on the "top" of the stack, QYEUE
instruction inserts it at the bottom of the stack (FIFO), or in the bottom of the topmeast Buff
buffers are used.

For further information, refer to documentation for HéSHinstruction, and see chaptetack for
general information about the stack.

2.4.19The RETURN Instruction
RETURN [expr];

The RETURNNstruction is used to terminate the current procedure level, and return control to a
level above. WheRETURNS executed inside one or more nesting construcDQaF , WHENor
OTHERWISEthen the nesting constructs (in the procedural levels being terminated) anatedmi
too.

Optionally, an expression can be specified as an argumentRETERNNstruction, and the string
resulting from evaluating this expression will be the return value from the prodedeie
terminated to the caller procedure level. Only a single value can be returnedR®HeRNs
executed with no argument, no return value is returned to the caller, and3K&IT AXcondition
{44} is raised if the subroutine was invoked as a function.

Example: Multiple entry points

A routine can have multiple exit points, i.e. a procedure can be terminated by any of several
RETURNRNstructions. A routine can also have multiple entry points, i.e. several routine entsy point
can be terminated by the saRETURNNstruction. However, this is rarer than having multiple exit
points, because it is generally perceived that it creates less structureddaiale code. Consider

the following code:

49

call foo

call bar

call baz

exit

foo:
if datatype(name, 'w') then

drop name

signal baz

bar:
name = 'foo'

baz:

if symbol('name’)=="VAR' then

say 'NAME currently has the value' name
else

say 'NAME is currently an unset variable'
return

Although this is hardly a very practical example, it shows how the main bulk of a routibe ca
used together with three different entry points. The main part of the routindks Htatement
having twoSAY statements. It can be invoked by callf@Q BAR orBAZ

There are several restrictions to this approach. For instandeRIDEEDUR&atement becomes
cumbersome, but not impossible, to use.

Also note that when a routine has multiple exit points, it may choose to return a returonhalaie
some of those exit points.

When a routine is located at the very end of a source file, there is an ilREIditRNNnstruction
after the last explicit clause. However, according to good programming pygoticehould avoid
taking advantage of this feature, because it can create problems later if you appendtines to
the source file and forget to change the impR&TURNo an explicit one.

If the current procedure level is the main level of either the program or an est@nalitine, then
aRETURNRNstruction is equivalent to &&XIT instruction, i.e. it will terminate thREXX program

or the external routine. The table in #hdt section shows the actions of both RiETURMNNd
EXIT instructions depending on the context in which they occur.

2.4.20The SAY Instruction

SAY [expr];
Evaluates the expressierpr, and prints the resulting string on the standard output streaxprlf
IS not specified, the nullstring is used instead. After the string has been wntierplamentation-
specific action is taken in order to produce an end-of-line.

The SAY instruction is roughly equivalent to

call lineout , expr

50

The differences are that there is no way of determining whether the printingaeassully
completed ifSAYis used, and the special variaBRBESULTis never set when executinggadY
instruction. Besides, the effect of omittiagpris different. In SAA API, th&RXSIOSAY
subfunction of thé&* XSIO exit handler is able to trapSAY instruction, but not a call to the
LINEOUT() built-in function. Further, thBIOTREADY¥ondition is never raised forSAY
instruction.

2.4.21The SELECT/WHEN/OTHERWISE Instruction

SELECT ; whenpart [whenpart ...][OTHERWISE [;]
[statenent ...]]END;

whenpart : WHEN expr [;] THEN [;] st at enent

This instruction is used for general purpose, nelgtedtructures. Although it has certain
similarities withCASEin Pascal andwitch in C, it is in some respects very different from these.
An example of the general use of ®IELECTinstruction is:

select
when exprl then statementl
when expr2 then do
statement2a
statement2b
end
when expr3 then statement3
otherwise
ostatementl
ostatement2
end

When theSELECTinstruction is executed, the next statement afteBtileE CTstatement must be
aWHENtatement. The expression immediately followingwheENoken is evaluated, and must
result in a valid boolean value. If it is true (i1¢, the statement following tiEHENtoken matching
theWHENs executed, and afterwards, control is transferred to the instruction followiBgihe
token matching th&ELECTinstruction. This is not completely true, since an instruction may
transfer control elsewhere, and thus implicitly terminateStBeECTinstruction; e.gLEAVE

EXIT, ITERATE, SIGNAL, orRETURMNr a condition trapped by meth&8iGNAL.

If the expression of the firsWHENs not true (i.e.0), then the next statement must be either another
WHENMr anOTHERWISEtatement. In the former case, the process explained above is iterated. In
the latter case, the clauses following @EHERWISHIp to theENDstatement are interpreted.

It is considered &YNTAXcondition, {7} if no OTHERWISEtatement when none of tiéHEN
expressions evaluates to true. In general this can only be detected during runtimeerHibwee
of theWHENM!is selected, the absence ofGAIHERWISEs not considered an error.

By the nature of th& ELECTinstruction, thaVHEBN are tested in the sequence they occur in the
source. If more than on&HENhave an expression that evaluates to true, the first one encountered is
selected.

If the programmer wants to associate more than one statement\Whit Bstatement, ® O/END
pair must be used to enclose the statements, to make them one statement concepueaity, H

51

zero, one, or more statements may be put aftedTeERWISEvithout having to enclose them in a
DOENDpair. The clause delimiter is optional af@FfHERWISEand before and aftdiHEN

Example: Writing SWITCHas IF

Although CASEin Pascal andwitch in C are in general table-driven (they check an integer
constant and jumps directly to the correase , based on the value of the constaBELECTin
REXX is not so. It is a just a shorthand notation for neltethstructions. Thus 8WITCH
instruction can always be written as set of nebdtedtatements; but for very largdVITCH
statements, the corresponding neskedstructure may be too deeply nested for the interpreter to
handle.

The following code shows how tI8VITCHstatement shown above can be written as a nHsted
structure:

if exprl then statementl
else if expr2 then do

statement2a
statement2b
end else if expr3 then statement3
else
ostatementl
ostatement2
end

2.4.22The SIGNAL Instruction

SIGNAL={ string| synbol };
[VALUE] expr ;
{ON | OFF } condi ti on [NAME
{ string| synbol }];

The SIGNAL instruction is used for two purposes: (a) to transfer control to a named label in the
program, and (b) to set up a named condition trap.

The first form in the syntax definition transfers control to the named label, whidremsts
somewhere in the program; if it does not exiSYANTAXcondition {16} is raised. If the label is
multiple defined, the first definition is used. The parameter can be either a swhimti {s taken
literally) or a string. If it is a string, then be sure that the case of thg stiatches the case of the
label where it is defined. In practice, labels are in upper case, so the string shaaild @agt
uppercase letters too, and no space characters.

The second form of the syntax is used if the second token of the instrudfidhUE Then, the

rest of the instruction is taken as a genBRiB&KX expression, which result after evaluation is taken
to be the name of the label to transfer control to. This form is really just a spaszabf the first
form, where the programmer is allowed to specify the label as an expressiorhdidtéhe start of
expr is such that it can not be misinterpreted as the first form (i.e. the first tok&pras neither

a string nor a symbol), then tN&ALUEsubkeyword can be omitted.

52

Example: Transferring control to inside a loop

When the control of execution is transferred ISIGNAL instruction, all active loops at the current
procedural level are terminated, i.e. they can not continued later, although they caneobeours
reentered from the normal start. The consequence of this is that the following diedgalis i

do forever
signal there
there:
nop
end

The fact that the jump is altogether within the loop does not prevent the loop from beimgtedmi
Thus, after the jump to the loop, tB&lDinstruction is attempted executed, which will result in a
SYNTAXcondition {10}. However, if control is transferred out of the loop after the label, but before
theEND then it would be legal, i.e. the following is legal:

do forever
signal there
there:
nop
signal after
end

after:

This is legal, simply because tB&IDinstruction is never seen during this script. Although both
TRL1 and TRL2 allow this construct, it will probably be disallowed in ANSI.

Just as loops are terminated B§I&GNAL instruction, SELECTandIF instructions are also
terminated. Thus, it is illegal to jump to a location within a block of statementsrezhia a
WHENOTHERWISEor IF instruction, unless the control is transferred out of the block before the
execution reaches the end of the block.

Whenever execution is transferred durinrgl@NAL instruction, the special variab#GL is set to
the line number of the line containing BESNAL instruction, before the control is transferred. If
this instruction extends over several lines, it refers to the first of this. Naitewen blanks are part
of a clause, so if the instruction starts with a line continuation, the real line akthgction is
different from that line where the instruction keyword is located.

The third form of syntax is used when the second token in the instruction iSGiNbe©OFF In

both cases must the third token in the instruction be then name of a condition (as a comgjamt stri
a symbol, which is taken literally), and the setup of that condition trap is changed.edinel s

token isOFF, then the trap of the named condition is disabled.

If the second token ®N then the trap of the named condition is enabled. Further, in this situation
two more tokens may be allowed in the instruction: the first mulstAdEand the second must be
the name of a label (either as a constant string or a symbol, which is takely)litértile five token
form is used, then the label of the condition handler is set to the named label, else thethame of
condition handler is set to the default, which is identical to the name of the conditibn itsel

53

Note that theNAMEsubclause of th8IGNAL instruction was a new construct in TRL2, and is not a
part of TRL1. Thus, older interpreters may not support it.

Example: Naming condition traps

Note that the default value for the condition handler (if the NAME subclause is notespesithe

name of the condition, not the condition handler from the previous time the condition was enabled.
Thus, after the following code, the name of the condition handler for the corsiimAXs

SYNTAX not FOOBAR:

signal on syntax name foobar
signal on syntax

Example: Named condition traps in TRL1

A common problem when trying to pd?EXX code from a TRL2 interpreter to a TRL1 interpreter,
is that explicitly named condition traps are not supported. There exist waysutowent this, like:

syntax_name ='SYNTAX_HANDLER'

signal on syntax

if 1 + 2 then /* will generate SYNTAX condition */
nop

syntax:

oldsigl = sigl

signal value translate(syntax_name)

syntax_handler:
say 'condition at line' oldsigl 'is being handled...'
exit

Here, a "global" variable is used to store the name of the real condition handler, ireticealisa

field for this in the interpreter. This works fine, but there are some problems: ialelear

SYNTAX _NAMEwust be exposed to everywhere, in order to be available at all times. It would be far
better if this value could be stored somewhere from which it could be retrieved fronriaofytha

script, no matter the current state of the call-stack. This can be fixed witlamogkeGLOBALV

under VM/CMS angutenv under Unix.

Another problem is that this destroys the possibility of setting up the condition harttl¢nevi
default handler name. However, to circumvent this, add aDEMAULT _SYNTAX_ HANDLER
label which becomes the new name for the¥dNTAXlabel.

Further information about conditions and condition traps are given in cl@gdrtions.

2.4.23The TRACE Instruction

TRACE [nunber | setting]|[VALUE] expr];
setting=A|S|C|E|F]|I|L|N|JO|R]|S

The TRACEInstruction is used to set a tracing mode. Depending on the current mode, various levels
of debugging information is displayed for the programmer. Also interactive tracatigwed,

54

where the user can re-execute clauses, change values of variables, or in geretaREXX
code interactively between the statements oREBXX script.

If settingis not specified, then the default vaNés assumed. If the second token aftRACEis
VALUE then the remaining parts of the clause is interpreted as an expression, whichwsdde is
as the trace setting. Else, if the second token is either a string of a symboljshiakein as the
trace setting; and a symbol is taken literally. In all other circumstanbesewver follows the token
TRACEs taken to be an expression, which value is the trace setting.

If a parameter is given to tH&RACEinstruction, and the second token in the instruction is not
VALUE then there must only be one token aftRACE and it must be either a constant string or a
symbol (which is taken literally). The value of this token can be either a whole numbeace a
setting.

If is it a whole number and the number is positive, then the number specifies how many of
interactive pauses to skip. This assumes interactive tracing; if interéetcing is not enabled, this
TRACEInstruction is ignored. If the parameter is a whole, negative number, then tracinmged t
off temporarily for a number of clauses determined by the absolute vaiuenbier

If the second token is a symbol of string, but not a whole number, then it is taken to be one of the
settings below. It may optionally be preceded by one or more questionatiafacters. Of the

rest of the token, only the first letter matter; this letter is translatedgder case, and must be one of
the following:

[A]
(All) Traces all clauses before execution.

[C]
(Commands) Traces all command clauses before execution.

[E]
(Errors) Traces any command that would raiseER&RORcondition (whether enabled or
not) after execution. Both the command clause and the return value is traced.

[F]
(Failures) Trances any command that would rais&#&leURE condition (whether enabled
or not) after execution. Both the command clause and the return value is traced.

[1]
(Intermediate) Traces not only all clauses, but also traces all evaluatigqoressons; even
intermediate results. This is the most detailed level of tracing.

[L]
(Labels) Traces the name of any label clause executed; whether the lahehped to or
not.

[N]
(Normal or Negative) This is the same asFhadure setting.

55

[O]
(Off) Turns off all tracing.

[R]
(Results) Traces all clauses and the results of evaluating expressionsekomtermediate
expressions are not traced.

TheErrors andFailures settings are not influenced by whether BRROPr FAILURE
conditions are enabled or not. Th@$RACEsettings will trace the command and return value after
the command have been executed, but before the respective condition is raised.

The levels of tracing might be set up graphically, as in the figure below. An arr@ateslthat the
setting pointed to is a superset of the setting pointed from.

[-> Failures -> Errors -> Commands
Off \

\----- > Labels -------- > All -> Results -> Intermediate
Hierarchy of TRACEsettings

According to this figurelntermediate is a superset ®esult , which is a superset &l .
Further,All is a superset of bothbommandsandLabels . Commandsis a superset drrors
which is a superset ¢failures . BothFailure andLabels are supersets @ff . Actually,
Commands strictly speaking not a superse&afors , sinceErrors traces after the command,
while Commandraces before the command.

Scan is not part of this diagram, since it provides a completely different tracingdnality. Note
thatScan is part of TRL1, but was removed in TRL2. It is not likely to be part of n&E{X
interpreters.

2.4.24The UPPER Instruction
UPPER symbol [symbol [symbol [...]]];

The UPPER instruction is used to translate the contents of one or more variables taseppEne
variables are translated in sequence from left to right.

Each symbol is separated by one or more blanks.

While it is more convenient and probably faster than individual calls to TRANSLATEEBRSs

not part of the ANSI standard and is not common in other interpreters so should be avoided. It is
provided to ease porting of programs from CMS.

Only simple and compound symbols can be specified. Specification of a stem variatdanmes
error.

2.5 Operators

An operator represents an operation to be carried out between two terms, such as divie@reThe

56

5 types of operators in thexx Language:Arithmetig AssignmentComparative Concatenation
andLogical Operators. Each is described in further details below.

2.5.1Arithmetic Operators

Arithmetic operators can be applied to numeric constantRard variables that evaluate to valid
Rexx numbers. The following operators are listed in decreasing order of precedence:

- Unary prefix. Same &- number.

+ Unary prefix. Same &+ number.

** Power

* Multiply

Divide

% Integer divide. Divide and return the integer part of the
division.

Il Remainder divide. Divide and return the remainder of the
division.

+ Add

- Subtract.

2.5.2Assignment Operators

Assignment operators are a means to change the value of a vaRakieonly has one assignment
operator.

= Assign the value on the right side of the "="to the variable
on the left.

2.5.3Comparative Operators

TheRexx comparative operators compare two terms and return the logicallviline result of
the comparison is true, Orif the result of the comparison is false. The non-strict comparative
operators will ignore leading or trailing blanks for string comparisons, and |eaatiog) for
numeric comparisons. Numeric comparisons are made if both terms to be compared Bexxal
numbers, otherwise string comparison is done. String comparisons are case sanditive
shorter of the two strings is padded with blanks.

The following lists the non-strict comparative operators.

= Equal

=, A= Not equal

> Greater than.

< Less than.

>= Greater than or equal.

<= Less than or equal

<>, >< Greater than or less than. Same as Not equal.

The following lists the strict comparative operators. For two strings to be catsigual when
using the strict equal comparative operator, both strings must be the same length.

== Strictly equal

==, A== Strictly not equal.
>> Strictly greater than.

57

<< Strictly less than.
>>= Strictly greater than or equal.
<<= Strictly less than or equal.

2.5.4Concatenation Operators

The concatenation operators combine two strings to form one, by appending the second string to the
right side of the first. Th&exx concatenation operators are:

(blank) Concatenation of strings with one space between them.

(abuttal) Concatenation of strings with no intervening space.

I Concatenation of strings with no intervening
space.
Examples:

a = abc;b ='def'

Sayab -> results in 'abc def'

Sayal|b -> results in ‘abcdef’

Say a'xyz' -> results in ‘abcxyz'

2.5.5Logical Operators

Logical operators work with thieexx strings 1 and 0, usually as a result of a comparative operator.
These operators also only result in logical TRUE; 1 or logical FALSE; 0.

& And Returns 1 if both terms are 1.

| Inclusive or Returns 1 if either term is 1.

&& Exclusive or Returns 1 if either term is 1 but NOT both
terms.

\ Logical not Reverses the result; 0 becomes 1 and 1 becomes 0.

2.6 Implementation-Specific Information

2.6.1Miscellaneous

OPTIONS settings
Are saved across subroutines, just like other pieces of information, like conditiomgssett
NUMERIGCsettings, etc. See chap@ptions for more information abo@PTIONS
settings.

Return value
To the program that calldglegina is limited to being an integer, when this is required by
the operating systems. All current implementations are for operating sys$taimequire
this.

Default return value
From aREXX program i) under most systems, specifically Unix, OS/2, MS-DOS. Here,
VMS deviates, since it usésas the default return value. Usidginder VMS tends to make
VMS issue a warning saying that no error occurred.

Transferring control into a loop
Works fine inRegina, as long as nEND THEN ELSE, WHENor OTHERWISE

58

instructions are executed afterwards; unless the normal entry-point for theicbhas been
executed after the transfer of control.

PARSE SOURCE information

PARSE VERSIONinformation

Last line of source code
Is implicitly taken to be terminated by an end-of-line sequen&egina, even if such a
sequence is not present in the source code GRRENEX script. This applies only to source
code. Also, the end-of-string INTERPRETSstrings is taken to be implicitly terminated by
an end-of-line character sequence.

Moving code MS-DOS to Unix
Is simplified byRegina, since it will accept the MS-DOS type end of line sequences as
valid. i.e. any Ctrl-M in front of a Ctrl-J in the source file is ignored on Unix systam
Regina. This applies only to source code.

Labels in INTERPRET
Is handled byRregina in the following way: A label can occur inside INTERPRET string,
but it is ignored, and can never be jumped to SIGNAL or CALL instruction.

2.6.2Implementation of the ADDRESS environment

Most people have problems invoking external programs. This section shows the basiadules, a
some tricks to let you useegina and otheRexx interpreters successfully.

Every call to an external program is executed by an im@lRDRESSstatement.

‘echo Hello planet’
is equivalent to
ADDRESS currentenvironment ‘echo Hello planet'

The default environment BYSTEMn Regina and many otheRexx interpreters.

EveryADDRES&®nvironment has its own purpose and advantages. It is a good idea to use
ADDRESSN front of each command. Everybody knows what happens in this case. And you can
choose thdestenvironment for the command.

2.6.2.1SYSTEM aka ENVIRONMENT aka OS2ENVIRONMENT

This is the all-purpose solution for every command. The command is passed to the current
command interpreter. It is generally the best option for most commands, but is has some
disadvantages:

You don't have control over the different interpreters. You can get ugly errors in Windgws NT
2000, XP or in unices if you don't know how the interpreter interprets your command.

You have some trouble passing special characters to the command. Have you every si&d to pa

a ">" sign to a command? You won't get what you expect if you don't know how to quote it to
bypass the interpreter.

You invoke a separate program just to invoke another program. It costs time and memory usage

Choosing another environment may lead to a quicker and safer execution.

UseSYSTEM(f you want to use pipelines and redirections of the interpreter or if you want to use a

built-in command of the shell. "echo" is a built-in command in command interpreters.h&so, t

59

Unix pipeline of commands like "progl | prog2 | prog3" cannot be represented shBegirna.

2.6.2.2COMMAND aka CMD aka PATH

This is the right ADDRESS environment if you know the called program's name but notitwkere
on disk. One example is "sort" in many systems.

Since Regina hasANSI's extremely useftADDRESS WITHechnique, you can very effectively
sort queue contents or stem leaves by:

ADDRESS PATH 'sort' WITH INPUT STEM unsort. OUTPUT STEM sort.

You let Regina find the program 'sort' (or SORT.EXE if you use Windows) and get the fastest way
to do it. You don't have to bother about the current command interpRegina acts as one. You

can pass every character you want &®hina does its best to let it appear in the called program. If
you want to specify a specific program, simply specify the fully qualifieddiee of the command

to execute.

2.6.2.3REXX or REGINA

Use this if you want to executeRexx program in a separate instance of the interpreter. Whereas a
normalCALL on an external program will run the exterRaixx program in the current instance of
Regina, this allows the extern&exx program to run in a new, independent instandeetfina.

Use this environment if:

1. The called interpreter is unstable and a crash in it should not affect the cuecriioex A
common situation where you want it, is an external program library you can bind with
RxFuncAdd . Such a library can crash or terminate the interpreter. The calling intergogtée
be affected by this termination.

2. You want to take advantage of the poweADIDRESS WITHedirection. The general
mechanism to communicate with external scripts is a queue, but you don't have this in case
where you want to pass error messages in a different way or if you use a sciipivasinct
designed to use queues originally.

3. The current interpreter shall be reused and you want to take advantage the second point. You
may have differenRegina interpreters and you want to use just the current interpreter even if it
isn't in your pathRegina tries to load the current interpreter a second time if you use this
ADDRES&nvironment. There is no difference betwd&DRESS REX>XA4ndADDRESS
REGINA Regina also attempts to load the same executable that the current instance wds start
from, but not every system passes enough informatioReg¢ma to find its own executable in
all cases.

2.6.2.4ADRRESS WITH on Windows

Redirection of program's input and/or output in general is relatively predictable vopeosting
systems, however mention must be made of behaviour specific to the Windows platform.

Windows and to a lesser degree OS/2, have techniques to hide windows, to start programs in
separate windows and otheol features. Florian did some significant testing of this on all
different Windows platforms and there is bad news. There is no consistent mechan&m to s
external programs without error and full control. Sounds strange, is strange. We haptiotie to:

use the interpreteADDRESS SYSTEMor not ADDRESS PATHr CMD

60

start GUI or text mode programs
choose the interpreter (CMD.EXE or COMMAND.COM)

The main goal was to start GUIs separately and text mode programs under theotdimérchller
(GUI or text).Regina can be part of a GUI progress and must be treated as GUI in this case. Most
people get upset with console windows popping up showing nothing.

Some combinations of the interpreter, the target programs, and the options we camngasstié
system lead to nonstarting, nonstopping, crashing programs. Or we may loose contraoidgimea
broken communications to the subproc@d3[)RESS WITH..).

So we had to choose either to let program run safely OR to let program run prettyitiddagogs
who designed Windows, not tiRegina crew!

So, if you have a DOS graphical extension known as Windows 95, Windows 98 or Windows
Millenium you will get console windows popping up if run from a GUI program. We are sorry for
this, we can't change it.

Those Systems with a 32 bit startup kernel known as Windows NT, Windows 2000, Windows XP
will hide the console windows when starting a text mode program from a GUI program.

ATTENTION: Your programs might crash or you may loose control either of the called program or
of Regina if you change the interpreter inside yRexx program. Never use
CALL VALUE 'COMSPEC', something, 'SYSTEM'

in your program if you don't know the consequences! Unpredictable behaviour is likely to occur;
use at your own peril!

2.6.3Regina Restricted Mode

Many language interpreters provide a mechanism where code executed withiretpattiet is
limited to affecting the environment of the interpreter and cannot change the lesteinanment
in which the interpreter runs.

Restricted mode is used in situations where you need to guarantee that the auexof a
program is unable to affect the user's environment.

Situations where a restricted mode is applicable include, Bggma as a database procedural
language, or as a language plug-in for a Web browser.

Features oRegina that are disabled in restricted mode are:
LINEOUT, CHAROUT, POPEN, RXFUNCADD BIFs
"OPEN WRITE", "OPEN BOTH" subcommands of STREAM BIF
The "built-in" environments eg. SYSTEM, CMD or PATH of ADDRESS command
Setting the value of a variable in the external environment with VALUE BIF.
Calling external functions

To runRegina in restricted mode, you can start RRegina interpreter from the command line with
the '-r' switch, or when using the Rexx SAA API, or-ing RXRESTRICTED to thig e
parameter of RexxStart() function.

61

2.6.4Native Language Support
Regina provides native language support in the following ways:
* Error messages can be displayed in a user-selectable native language.

» Locale support for whitespace and character translations.

2.6.4.1Error Messages

All native language error messages are contained in binary files (*.mtbyeHauit with the
Regina executables from source files (*.mts).

The mechanisrRegina uses to determine what native language to use to display error messages
depends on the operating system.

On EPOC32, the language is supplied when installing; the selected language iedadntai
default.mtb. On all other platformRgegina uses environment variables if you want to use a
language other than English.

The English language messages are built into the interpreter for two reasons:

1. to satisfy the ANSI requirement that error messages can be obtained i Haglgsthe
ERRORTEXT BIF and specifying a value of 'S’ for argument 2.

2. used as a fallback position when no native language support is available
2.6.4.2Locale Support

Locale support is very limited iRegina currently. There is no ANSI specification about it and care
has been taken to avoid unexpected behaviour for multi-language scripts. The basic intém&ion of
support was the ability to handle special characters in some western localesmesystems.
Non-breakable spaces are part of nearly every character set, but they arerhplenb@mnt in

REXX programs because of the missing information about the runtime character set itthgn wr
the program. Another typical problem came from extra characters in the ehaetstwhich allow

the translation in some cases. This problem is unsolvable in advance, because someeglyphs a
characters in one language and they are symbols in other languages. These prolbensslead

at runtime only with the knowledge of the country and language.

Regina implements some code which is executed once when the interpreter starts up. This code
evaluates the command line parameter or the environment variables and extiatbsrttation

about the character set. Note that this operation is not done on a per-thread basis and it is done
before any other operation happens. So no change can be done once a program has been loaded intc
memory and parsed. The useA®DRESS REXXs recommended for cases where a different

character set is required for a called program.

Affected operations of the locale support are:

string comparison if options STRICT_ANSI and STRICT_WHITESPACE_COMPARI&re

not set.

uppercase translation of variable names, see VALUE BIF or the API functions.

whitespace delimiter detection and elemination at word boundaries or number bounddiries at
possible places including cases of reading REXX prorgams and prodess&&foperations.
CASELESSranslation irPARSEoperations.

case translation of the builtin functions TRANSLATE, LOWER, UPPER and the itistruc
UPPER

DATATYPE BIF results.
file name case translation when searching external procedures or when usingftirdosiding
external libraries.

62

2.6.4.3Implementation
To specify a native language, up to 2 environment variables are used.

REGINA_LANG environment variable is set to an ISO 639, 2 character language abbreviation as
defined in the following table for error messages, optionally followed by a comma doddlee
Thelocaleis explained in Section 1; “Executing Rexx programs With Regina”. The value given a
the command line by the parametdr " takes precedence if it is given at all, even if the empty
string is used.

REGINA_LANG L anguage Trandlation By

de German Floran Grosse-Coosmann

es Spanish Pablo Garcia-Abia

no Norwegian Vidar Tysse

pl Polish Bartosz Kozlowski

pt Portuguese Susana and Brian Carpenter,
Josie Medeiros

(to get your name in this table, contact the maintainer with the language you wish to support)

If REGINA_LANG is not set, the default en. The case of the value is irrelevalaly is the same
asen.

REGINA_LANG_DIR is required ifRegina does not know where the language files will be at
runtime.

Any binary distribution that includes an installation routine; RPM, Windows NSIS o€CBPO
will set the location of the .mtb files automatically. Similarly building anthlisg Regina on
Unix-like platforms usingonfigure;make instalkombination will also set the location
automatically. All other platforms will require this environment variable tsbemanually.

63

64

3 REXX Built-in Functions

This chapter describes tiREXX library of built-in functions. It is divided into three parts:

e First a general introduction to built-in functions, pointing out concepts, pitfalls, parameter
conventions, peculiarities, and possible system dependencies.

¢« Then there is the reference section, which describes in detail each function in tle built-
library.

* At the end, there is documentation that describes where an®égiva differs from standard
REXX, as described in the two other sections. It also R&gina's extensions to the built-in
library.

It is recommended that you read the first part on first on first reading of this documentation, and
that you use the second part as reference. The third part is only relevant if you are going to use
Regina.

3.1 General Information

This section is an introduction to the built-in functions. It describes common behavior, {gsrame
conventions, concepts and list possible system-dependent parts.

3.1.1The Syntax Format

In the description of the built-in functions, the syntax of each one is listed. For eachyoftéhe s
diagrams, the parts written italic font names the parameters. Terms enclos¢dqguare

bracket$ denote optional elements. And ttaurier font is used to denote that something
should be written as is, and it is also used to mark output from the computer. At the right of eac
function syntax is an indication of where the function is defined.

(ANSI) ANSI Standard foREXX 1996
(EXT-ANSI) ExtendedREXX

(SAA) System Application Architecture - IBM
(0S/2) IBM OS/2 REXX

(CMYS) REXX on CMS

(AREXX) AREXX on Amiga

(REGINA) Additional function provided biRegina

Definitions of the AREXX built-in functions have been taken verbatim from
http://dfduck.homeip.net/dfd/ados/arexx/main.shtml

Note that in standaf@EXX it is not really allowed to let the last possible parameter be empty if all
commas are included, although some implementations allow it. In the following calls:

say D2X(61)

say D2X(61,1)
say D2X(61,)

65

http://dfduck.homeip.net/dfd/ados/arexx/main.shtml

The two first return the string consisting of a single chara@Gtetile the last should return error. If
the last argument of a function call is omitted, you can not safely include the inehedraceding
comma.

3.1.2Precision and Normalization

The built-in library uses its own internal precision for whole numbers, which may benteefrom
-999999999 to +999999999. That is probably far more than you will ever need in the built-in
functions. For most functions, neither parameters nor return values will be effeetey $stting

of NUMERICIn the few cases where this does not hold, it is explicitly stated in the description of
the function.

In general, only parameters that are required to be whole numbers are used in tHenetsian,
while numbers not required to be whole numbers are normalized according to the setting of
NUMERICoefore use. But of course, if a parameter is a numeric expression, that exprdsben wi
calculated and normalized under the settingdWMERICbefore it is given to the function as a
parameter.

3.1.3Standard Parameter Names

In the descriptions of the built-in functions, several generic names are used foetpasato

indicate something about the type and use of that parameter, e.g. valid range. To avang tbeeat
same information for the majority of the functions, some common "rules"” for the stgpadameter
names are stated here. These rules implicitly apply for the rest of thisrchapte

Note that the following list does not try to classify any gerREBXX "datatypes”, but provides a
binding between the sub-datatypes of strings and the methodology used when naming garameter

* Lengthis a non-negative whole number within the internal precision of the built-in functions.
Whether it denotes a length in characters or in words, depends on the context.

e Stringcan be any normal character string, including the nullstring. There are no further
requirements for this parameter. Sometimes a string is called a "padkgdtstexplicitly
show that it usually contains more than the normal printable characters.

» Optionis used in some of the functions to choose a particular action, ®4TiB() to set the
format in which the date is returned. Everything except the first charact&evighored, and
case does not matter. note that the string should consequently not have any leading space.

e Startis a positive whole number, and denotes a start position in e.g. a string. Whethertio refers
characters or words depends on the context. The first position is always nunhankxss
explicitly stated otherwise in the documentation. Note that when return values denotes
positions, the numbdr is generally used to denote a nonexistent position.

» Padcharmust be a string, exactly one character long. That character is used for padding.

» Streamidis a string that identifiesREXX stream. The actual contents and format of such a
string is implementation dependent.

¢ Numberis any validREXX number, and will be normalized according to the settings of
NUMERICoefore it is used by the function.

66

If you see one of these names having a number appended, that is only to separate sevetaparam
of the same type, e.gtring], string2 etc. They still follow the rules listed above. There are several
parameters in the built-in functions that do not easily fall into the categories dib@ge are given
other names, and their type and functionality will be described together with thefsnatiwhich

they occur.

3.1.4Error Messages

There are several errors that might occur in the built-in functions. Just one essagenes only
relevant for all the built-in functions, that is number W@@rrect call to routing In fact, an
implementation oREXX can choose to use that for any problem it encounters in the built-in
functions. Regina also provides further information in errors in built-in functions, aeddfy the
ANSI standard. This additional information is provided as sub-error messages angdprsvale a
more detailed explanation of the error.

Depending on the implementation, other error messages might be used as well. &ageme
number 26 Ifivalid whole numbgrmight be used for any case where a parameter should have been
a whole number, or where a whole number is out of range. It is implied that this erragerczssa

be used in these situations, and it is not explicitly mentioned in the description of thenfnct

Other general error messages that might be used in the built-in function®©areierber 41Bad
arithmetic conversionfor any parameter that should have been a WlidX number. The error
message 13r{valid binary or hexadecimal stringnight occur in any of the conversion routines
that converts from binary or hexadecimal forni&2X() , X2B() , X2C() , X2D()). And of course
the more general error messages like error messadachife resources exhausjeran occur.

Generally, it is taken as granted that these error messages might ocoyrrileaant built-in
function, and this will not be restated for each function. When other error messagesdbamghe
relevant, it will be mentioned in the text.

In REXX, it is in general not an error to specify a start position that is larger thamgjtle ¢ the
string, or a length that refers to parts of a string that is beyond the end of thafl$teimyeaning of
such instances will depend on the context, and are described for each function.

3.1.5Possible System Dependencies

Some of the functions in the built-in library are more or less system or implémemtependent.
The functionality of these may vary, so you should use defensive programming and be prepared for
any side-effects that they might have. These functions include:

« ADDRESS() is dependent on your operating system and the implementatRI>of, since
there is not standard for naming environments.

« ARG() at the main level (not in subroutines and functions) is dependent on how your
implementation handles and parses the parameters it got from the operatimg isystalso
dependent on whether the user specifies the -a command line switch.

e BITAND() ,BITOR() andBITXOR() are dependent on the character set of your machine.
Seemingly identical parameters will in general return very differanitseon ASCII and
EBCDIC machines. Results will be identical if the parameter was givende thections as a
binary or hexadecimal literal.

67

C2X() ,C2D() , D2C() andX2C() will be effected by the character set of your computer
since they convert to or from characters. Note th@2X() andC2D() get their first
parameter as a binary or hexadecimal literal, the result will be unaffegtlie machine type.
Also note that the functiorB2X() , X2B() , X2D() andD2X() are not effected by the
character set, since they do not use character representation.

CHARIN() , CHAROUT() CHARS(), LINEIN() , LINEOUT() ,LINES() andSTREAM()

are the interface to the file system. They might have system dependent piesuinaseveral

ways. Firstly, the naming of streams is very dependent on the operating systemd\5¢oe
operation of stream is very dependent on both the operating system and the implementation.
You can safely assume very little about how streams behave, so carefully read the
documentation for your particular implementation.

CONDITIONY() is dependent on the condition system, which in turn depends on such
implementation dependent things as file I/O and execution of commands. Although thé genera
operation of this function will be fairly equal among systems, the details may:. diff

DATATYPE() andTRANSLATE() know how to recognize upper and lower case letters, and
how to transform letters to upper case. If yB&EXX implementation supports national
character sets, the operation of these two functions will depend on the language chosen.

DATE() has the optionsonth , Weekday andNormal , which produce the name of the day
or month in text. Depending on how your implementation handles national character sets, the
result from these functions might use the correct spelling of the currently chogeagde.

DELWORD() SUBWORD()WORD() WORDINDEX() WORDLENGTH(WORDPOS(and
WORDS()requires the concept of a "word", which is defined as a non-blank characters
separated by blanks. However, the interpretation of what is a blank character depends upon the
implementation.

ERRORTEXT()might have slightly different wordings, depending on the implementation, but

the meaning and numbering should be the same. However, note that some implementations may
have additional error messages, and some might not follow the standard numbering. Error
messages may also be returned in the user's native language.

QUEUED() refers to the system specific concept of a "stack”, which is either interestieonal
to the implementation. The result of this function may therefore be dependent on how the stack
is implemented on your system.

RANDOM()will differ from machine to machine, since the algorithm is implementation
dependent. If you set the seed, you can safely assume that the same interpreter sauaher the
operating system and on the same hardware platform will return a reproducible sedgienié

you change to another interpreter, another machine or even just another version of the operating
system, the same seed might not give the same pseudo-random sequence.

SOURCELINE() has been changed betwd®iaXX language level 3.50 and 4.00. In 4.00 it can

returnO if the REXX implementation finds it necessary, and any request for a particular line
may get a nullstring as result. Before assuming that this function will retytinirag useful,

68

consult the documentation.

« TIME() will differ somewhat on different machines, since it is dependent on the underlying
operating system to produce the timing information. In particular, the granuladigcauracy
of this information may vary.

 VALUE() will be dependent on implementation and operating system if it is called withrdts thi
parameter specified. Consult the implementation specific documentation fomfooneation
about how each implementation handles this situation.

« XRANGE() will return a string, which contents will be dependent on the character set used by
your computer. You can safely make very few assumptions about the visual represehéation, t
length, or the character order of the string returned by this function.

As you can see, evdEXX interpreters that are within the standard can differ quite a lot in the
built-in functions. Although the points listed above seldom are any problem, you should never
assume anything about them before you have read the implementation specific docomentati
Failure to do so will give you surprises sooner or later.

And, by the way, many implementations (probably the majority) do not follow the standard
completely. So, in fact, you should never assume anything at all. Sorry ...

3.1.6Blanks vs. Spaces

Note that the description differs between "blanks" and the <space> charactark Aslday

character that might be used as "whitespace" to separate text into groupsictecharhe <space>
character is only one of several possible blanks. When this text says "blank" itangame from

a set of characters that are used to separate visual characters into word$is\thghgays

<space>, it means one particular blank, that which is generally bound to the space banwl a nor
computer keyboard.

All implementation can be trusted to treat the <space> character as blank oradditiaracters
that might be interpreted as blanks are <tab> (horizontal tabulator), <ff> ¢edinkvt> (vertical
tabulator), <nl> (newline) and <cr> (carriage return). The interpretation dfisvhkank will vary
between machines, operating systems and interpreters. If you are using suppddrfal nat
character sets, it will even depend on the language selected. So be sure to check theatmume
before you assume anything about blank characters.

Some implementations use only one blank character, and perceives the set of blandkrslaaract
equivalent to the <space> character. This will depend on the implementation, thécls@tathe
customs of the operating system and various other reasons.

3.2 Regina Built-in Functions

Below follows an in depth description of all the functions in the library of built-in functidote
that all functions in this section are available on all porRRegfina. Each function is designated as
being part of the ANSI standard, or from other implementations. Following sectionbeeisose
built-in functions that are available on specific ports of Regina, or when Regina iwibuitertain
switches.

69

ABBREV(long, short [,length]) - (ANSI)

Returnsl if the stringshortis strictly equal to the initial first part of the stritogng, and return®
otherwise. The minimum length whishortmust have, can be specifiedi@sgth If lengthis
unspecified, no minimum restrictions for the lengtistodrtapplies, and thus the nullstring is an
abbreviation of any string.

Note that this function is case sensitive, and that leading and trailing spanes strgpped off
before the two strings are compared.

ABBREV('Foobar','Foo’) 1
ABBREV('Foobar','Foo',4) 0 /*Too short */
‘ ABBREV('Foobar','foo’) 0 /*Different case */

ABS(number) - (ANSI)

Returns the absolute value of thember which can be any valiBEXX number. Note that the
result will be normalized according to the current settingGMERIC

ABS(-42) 42
ABS(100) 100

ADDRESS() - (ANSI)

Returns the current default environment to which commands are sent. The value is thet wit
ADDRESSIlause, for more information, see documentation on that clause.

~ ADDRESS() UNIX /* Maybe */

ARG([argno [,option]]) - (ANSI)

Returns information about the arguments of the current procedure level. For subroutines and
functions it will refer to the arguments with which they were called. For tha"meogram it will
refer to the arguments used whenREEXX interpreter was called.

Note that under some operating systelREEXX scripts are run by starting tREXX interpreter as a
program, giving it the name of the script to be executed as parameter. TREXKenterpreter
might process the command line and "eat" some or all of the arguments and options. & hbkesfor
result of this function at the main level is implementation dependent. The parts of tharmdm

line which are not available to tlREXX script might for instance be the options and arguments
meaningful only to the interpreter itself.

Also note that how the interpreter on the main level divides the parameter line intduadivi
arguments, is implementation dependent. The standard seems to define that the nthireproce
level can only get one parameter string, but don't count on it.

For more information on how the interpreter processes arguments when called fronrdliegpe
system, see the documentation on how to rRREAX script.

70

When called without any paramete®&®G() will return the number of comma-delimited
arguments. Unspecified (omitted) arguments at the end of the call are not countéleNote
difference between using comma and using space to separate strings. Only epamaizd
arguments will be interpreted IREXX as different arguments. Space-separated strings are
interpreted as different parts of the same argument.

Argnomust be a positive whole number. If oalgnois specified, the argument specified will be
returned. The first argument is numbered &r¢fnorefers to an unspecified argument (either
omitted orargnois greater than the number of arguments), a nullstring is returned.

If optionis also specified, the return value will ber 0, depending on the value gptionand on
whether the numbered parameter was specified or not. Option can be:

O
! (Omitted) Returnd if the numbered argument was omitted or unspecified. Otherfvise,
returned.
[E]
(Existing) Returnd if the numbered argument was specified, @radherwise.
If called as:
CALL FUNCTION 'This''is', 'a’,, 'test',,
ARG() 4 [*Last parameter omitted */
ARG(1) ‘This is'
ARG(2) ‘a’
ARG(3) !
ARG(9) " [*Ninth parameter doesn't exist*/
ARG(2,'E") 1
ARG(2,'0")
ARG(3,'E") 0 /*Third parameter omitted */
ARG(9,'0") 1

B2C(binstring) - (AREXX)

Converts a string of binary digits(0,1)into the corresponding(packed)charactsergption. The
conversion is the same as though the argument string had been specified as anétgrairbig
(e.g. '1010'B). Blanks are permitted in the string,but only at byte boundaries. This function is
particularly useful for creating strings that are to be used as bit masks.

- B2C(100110011) '3
- B2C(01100001') Al

71

B2X(binstring) - (ANSI)

Takes a parameter which is interpreted as a binary string, and returns a meabskeicig which
represent the same informatid@instring can only contain the binary digi@lsand1. To increase
readability, blanks may be includedbimstringto group the digits into groups. Each such group
must have a multiple of four binary digits, except from the first group. If the number of Higas
in the first group is not a multiple of four, that group is padded at the left with up to thaewlea
zeros, to make it a multiple of four. Blanks can only occur between binary digits, nadiag lea
trailing characters.

Each group of four binary digits is translated into on hexadecimal digit in the outpgt $tere
will be no extra blanks in the result, and the upper six hexadecimal digits are in tgger ca

B2X('0010 01011100 0011") '26C3'
B2X('10 0101 11111111") '26FF'
B2X('0100100 0011') 243"

BEEP(frequency [,duration]) - (OS/2)

Sounds the machine's bell. Tinequencyandduration (in milliseconds) of the tone are specified. If
no durationvalue is specified, it defaults to 1. Not all operating systems can sound theiritiells w
the given specifications.

~ BEEP(50,1000)

BITAND(stringl [,[string2] [,padchar]]) - (ANSI)

Returns the result from bytewise applying the operator AND to the characteestwot strings
stringlandstring2 Note that this is not the logical AND operation, but the bitwise AND operation.
String2defaults to a nullstring. The two strings are left-justified; the firstachtars in both strings

will be AND'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is defined by the
padcharcharacter. If it is undefined, the remaining part of the longer string is appendedesutihe r
after all characters in the shorter string have been procespadcHaris defined, each char in the
remaining part of the longer string is logically AND'ed with piaelchar(or rather, the shorter

string is padded on the right length, uspagichal).

When using this function on character strings, e.g. to uppercase or lowercase dstragylt will
be dependent on the character set used. To lowercase a string in EBCIBOANB() with a
padcharvalue ofbf’x . To do the same in ASCII, uBdTOR() with apadcharvalue of'20'x

BITAND('123456'%,'3456'x) '101456'x
BITAND('foobar',,'df'x) 'FOOBAR' /*For ASCII*/
BITAND('123456'%,'3456'%,'f0'X) 101450

BITCHG(string, bit) - (AREXX)

Changes the state of the specifigidin the argumengtring. Bit numbers are defined such that bit O

72

is the low-order bit of the rightmost byte of the string.

~ BITCHG(0313'x,4) '0303'x
BITCLR(string, bit) - (AREXX)

Clears (sets to zero) the speciflatlin the argumengtring. Bit numbers are defined such that bit O
is the low-order bit of the rightmost byte of the string.

~ BITCLR(0313',4) '0303'x
BITCOMP(stringl, string2, bit [,pad]) - (AREXX)

Compares the argument strings bit-by-bit,starting at bit number 0. The returned\tbkribit
number of the first bit in which the strings differ,or -1 if the strings are idéntica

BITCOMP('7F'x,'"FF'x) 7'
BITCOMP('FF'x,'FF'x) -1

BITOR(stringl [, [string2] [,padchar]]) - (ANSI)

Returns the result from bytewise applying the operator OR to the characterswo gtangs
stringlandstring2 Note that this is not the logical OR operation, but the bitwise OR operation.
String2defaults to a nullstring. The two strings are left-justified; the firstachars in both strings
will be OR'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is defined by the
padcharcharacter. If it is undefined, the remaining part of the longer string is appendedesutihe r
after all characters in the shorter string have been procespadctiaris defined, each char in the
remaining part of the longer string is logically OR'ed withghdchar(or rather, the shorter string
is padded on the right length, usipgdchay).

When using this function on character strings, e.g. to uppercase or lowercase dstragylt will
be dependent on the character set used.

BITOR('12x) '12'x
BITOR('15'%,'24'X) '35'x
BITOR('15'%,'2456'X) '3556'x
BITOR('15'%,'2456',"'FO'X) '‘35F6'
BITOR('1111'%,,'4D'X) '5D5D!X
BITOR('pQrS',,'20'x) 'pars' /* ASCII */

BITSET(string, bit) - (AREXX)

Sets the specifielit in the argumergtring to 1. Bit numbers are defined such that bit O is the low-
order bit of the rightmost byte of the string.

~ BITSET(0313,2) 0317’

73

BITTST(string, bit) - (AREXX)

The boolean return indicates the state of the specified bit in the argument string.
Bit numbers are defined such that bit O is the low-order bit of the rightmost byte tortge st

 BITTST(0313'%,4) 1

BITXOR(stringl|, [string2] [,padchar]]) - (ANSI)

Works likeBITAND() , except that the logical function XOR (exclusive OR) is used instead of
AND. For more information se@lTAND() .

BITXOR('123456'%,'3456'X) '266256'X
BITXOR('FooBar',,'20'x) fOODAR' /*For ASCII */
* BITXOR('123456','3456'X, f0'X) '2662A6'

BUFTYPE() - (CMS)

This function is used for displaying the contents of the stack. It will display both itinge atid
notify where the buffers are displayed. It is meant for debugging, especialacinte, when you
need to obtain information about the contents of the stack. It always returns the nulsiulitekes
no parameters.

Here is an example of the output from callBIgFTYPE(note that the second and fourth buffers are
empty):

==>Lines: 4

==> Buffer: 3

"fourth line pushed, in third buffer"
==> Buffer: 2

==> Buffer: 1

“third line pushed, in first buffer"

==> Buffer: 0

"second line pushed, in 'zeroth' buffer"
"first line pushed, in 'zeroth' buffer"
==> End of Stack

C2B(string) - (AREXX)

Converts the suppliestring into the equivalent string of binary digits.

‘ C2B('abc’) '04.1000010110001001100011'
C2D(string [,length]) - (ANSI)

Returns a whole number, which is the decimal representation of the packedtsigygnterpreted

as a binary number. liéngth(which must be a non-negative whole number) is specified, it denotes
the number of charactersstring to be converted, argtring is interpreted as a two's complement
representation of a binary number, consisting of the length rightmost charasteirsginif lengthis

74

not specifiedstring is interpreted as an unsigned number.

If lengthis larger than the length efring, string is sign-extended on the left. i.e. if the most
significant bit of the leftmost char sfringis setstring is padded withff'x chars at the left
side. If the bit is not se)0'x chars are used for padding.

If lengthis too short, only theengthrightmost characters string are considered. Note that this
will not only in general change the value of the number, but it might even change the sign.

Note that this function is very dependent on the character set that your computer is using.

If it is not possible to express the final result as a whole number under the cutnegs sét
NUMERIC DIGITS, an error is reported. The number to be returned will not be stored in the
internal representation of the built-in library, so size restrictions on whole nsithia¢igenerally
applies for built-in functions, do not apply in this case.

C2D('foo") '6713199' /*For ASCII machines */
C2D('103'%) '259'

C2D('103'%,1) '3

C2D('103'%,2) '259'

C2D('0103'%,3) '259'

C2D('ffff'x,2) -1

C2D('ffff'x) '65535'

C2D('ffff'x,3) '65535'

C2D('fff9'x,2) '-6'

C2D('ff80'%,2) '-128'

C2X(string) - (ANSI)

Returns a string of hexadecimal digits that represents the characigssing. Converting is done
bytewise, the six highest hexadecimal digits are in uppercase, and there arkmahdtacters in
the result Leading zeros are not stripped off in the result. Note that the behaviofuwictian is
dependent on the character set that your computer is running (e.g. ASCII or EBCDIC).

C2X('ffff'x) 'FFFF'

C2X('Abc’) '416263' /[*For ASCII Machines */
C2X('1234'x) 1234

C2X('011 0011 1101'b) '033D!

CD(directory) - (REGINA)
CHDIR(directory) - (REGINA)

Changes the current process's directory taliteetory specified. A more portable, though non-
standard alternative is to use the DIRECTORY BIF.

75

‘ CHDIR('/tmp/aa’) I* ﬁew directory now /tmp/aa */

CENTER(string, length [, padchar]) - (ANSI)
CENTRE(string, length [, padchar]) - (ANSI)

This function has two names, to support both American and British spelling. It will s&mgrin

a string total of lengtlengthcharacters. lfength(which must be a non-negative whole number) is
greater than the length siiring, string is padded witlpadcharor <space> ipadcharis

unspecified. lengthis smaller than the length sfring character will be removed.

If possible, both ends atring receives (or loses) the same number of characters. If an odd number
of characters are to be added (or removed), one character more is added to (or removed from)
right end than the left end sfring.

CENTER('Foobar',10) ' Foobar '
CENTER('Foobar',11) ' Foobar
CENTRE('Foobar',3) ‘oob’
CENTER('Foobar',4) ‘ooba’
CENTER('Foobar',10,*") **Foobar**'

CHANGESTR(needle, haystack, newneedle) - (ANSI)

The purpose of this function is to replace all occurrencesedlein the stringhaystackwith
newneedleThe function returns the changed string.

If haystackdoes not containeedle then the originahaystacks returned.

CHANGESTR('a','fred’,'c") ‘fred'
CHANGESTR(",",’x) !
CHANGESTR('a','abcdef','x") 'Xbcdef'
CHANGESTR('0','0,'1") 1
CHANGESTR('a','def','xyz") ‘def’
CHANGESTR('a',",'x") :
CHANGESTR(",'def','xyz") ‘def’
CHANGESTR('abc','abcdef’,'xyz") 'xyzdef
CHANGESTR((‘abcdefg’,'abcdef','xyz") ‘abcdef'
CHANGESTR 'zdefzcdzd'
(‘abc','abcdefabccdabced’,'z")

CHARIN([streamid] [,[start] [,length]]) - (ANSI)

This function will in general read characters from a stream, and return acstnitagning the
characters read. Thstreamidparameter names a particular stream to read from. If it is unspecified,

76

the default input stream is used.

Thestart parameter specifies a character in the stream, on which to start readorg. &8sthing is

read, the current read position is set to that character, and it will be the fiesttehaead. Ibtartis
unspecified, no repositioning will be done. Independent of any conventions of the operating system,
the first character in a stream is always numbered 1. Note that tranganistto not allow

repositioning, and an error is reported if ghart parameter is specified for a transient stream.

Thelengthparameter specifies the number of characters to read. If the reading did wortyrthe re
string will be of lengtHength There are no other ways to how many characters were read than
checking the length of the return value. After the read, the current read position is maosed &g
many characters as was readeifgthis unspecified, it defaults tb. If lengthis 0, nothing is read,
but the file might still be repositionedstart was specified.

Note that this function read the stream raw. Some operating systems usec$aeadiers to differ
between separate lines in text files. On these systems these speaechavill be returned as
well. Therefore, never assume that this function will behave identical for teatrst on different
systems.

What happens when an error occurs or the End-Of-File (EOF) is seen during reading, is
implementation dependent. The implementation may choose to $DIREAD¥ondition (does
not exist INREXX language level 3.50). For more information, see chapt&tream | nput and
Output.

(Assuming that the file/tmp/file " contains the first line:This is the first line "):
CHARIN() 'F' [*Maybe */
CHARIN(,,6) 'Foobar' /*Maybe */
CHARIN('/tmpffile',,6) ‘This i’
CHARIN('/tmpffile',4,6) 'sist

CHAROUT ([streamid] [,[string] [,start]]) - (ANSI)

In general this function will writstring to astreamid If streamidis not specified the default
output stream will be used.

If startis specified, the current write position will be set tosteetth character irstreamid before
any writing is done. Note that the current write position ca not be set for transs@mstand
attempts to do so will report an error. Independent of any conventions that the operating syste
might have, the first character in the stream is numbkerédstartis not specified, the current write
position will not be changed before writing.

If stringis omitted, nothing is written, and the effect is to set the current write posistantiis
specified. If neithestring norstartis specified, the implementation can really do whatever it likes,
and many implementations use this operation to close the file, or flush any changes. Check
implementation specific documentation for more information.

The return value is the number of charactersdriimg that was not successfully written, @alenotes
a successful write. Note that in maREXX implementations there is no need to open a stream; it

77

will be implicitly opened when it is first used in a read or write operation.

(Assuming the file referred to mutdata was empty, it will contain the strirfgpobWow
afterwards. Note that there might will not be an End-Of-Line marker aftestting, it depends on
the implementation.)

CHAROUT(,'Foobar") ‘0’
CHAROUT (outdata,'Foobar") '0'
CHAROUT (outdata,"Wow',5) ‘0

CHARS([streamid]) - (ANSI)

Returns the number of characters left in the nastreéimid or the default input streamsfreamid

Is unspecified. For transient streams this will always be €ltlifemore characters are available, or
0 if the End-Of-File condition has been met. For persistent streams the numberiofrrgimges

in the file will be possible to calculate and the true number of remaining bytdsewdturned.

However, on some systems, it is difficult to calculate the number of charadtensd persistent

stream; the requirements@HARS() has therefore been relaxed, so it can retumstead of any
number other thaf. If it returnsl, you can therefore not assume anything more than that there is at
least one more character left in the input stream.

‘ CHARS() '"1' /* more data on def. input stream */ ‘
CHARS() '0' /* EOF for def. input stream */
CHARS(‘outdata’) '94' [* maybe */

CLOSE(file) - (AREXX)

Closes thdile specified by the given logical name. The returned value is a boolean success flag, and
will be 1 unless the specified file was not open.

- CLOSE(iinput) '

COMPARE(stringl, string2 [,padchar]) - (ANSI)

This function will comparestringlto string2 and return a whole number which will be 0 if they are
equal, otherwise the position of the first character at which the two stringsislifgeurned. The
comparison is case-sensitive, and leading and trailing space do matter.

If the strings are of unequal length, the shorter string will be padded at the right hanithetheé w
padcharcharacter to the length of the longer string before the comparisgpadicharis not
specified, <space> is used.

COMPARE('FooBar','Foobar’) ‘4'
COMPARE('Foobar','Foobar’) {0}
COMPARE('Foobarrr','Fooba’) '6'
COMPARE('Foobarrr','Fooba’,'r") ‘0

78

COMPRESS(string [,list]) - (AREXX)

If the list argument is omitted,the function removes leading,trailing,or embedded blank clsaracter
from thestring argument. If the optiondikt is supplied, it specifies the characters to be removed
from thestring.

COMPRESS(" why not *) ‘whynot'
COMPRESS('++12-34-+','+-") '123

CONDITION([option]) - (ANSI)

Returns information about the current trapped condition. A condition becomes the current trapped
condition when a condition handler is called ®&LL or SIGNAL) to handle the condition. The
parametepption specifies what sort of information to return:

[C]
(Condition) The name of the current trapped condition is return, this will be one of the
condition named legal t8SIGNAL ON, like SYNTAXHALT, NOVALUENOTREADY
ERROPRY FAILURE.

[D]
(Description) A text describing the reason for the condition. What to put into this easabl
implementation and system dependent.

[1]
(Instruction) Returns eith€2ALL or SIGNAL, depending on which method was current
when the condition was trapped.

[S]

(State) The current state of the current trapped condition. This can be @NeO#F or
DELAY. Note that this option reflect the current state, which may change, not the dtate at t
time when the condition was trapped.

For more information on conditions, consult the cha@trditions. Note that condition may in
several ways be dependent on the implementation and system, so read system andtatipieme
dependent information too.

COPIES(string, copies) - (ANSI)

Returns a string withopiesconcatenated copies stfing. Copiesmust be a non-negative whole
number. No extra space is added between the copies.

COPIES('Fo0',3) 'FooFooFo0'
COPIES('*' 16) Ikkkkkkkkkkhkkkkkx!
COPIES('Bar ',2)'Bar Bar'
COPIES(",10000) "

COUNTSTR(needle, haystack) - (ANSI)

Returns a count of the number of occurrenceeefllein haystackhat do not overlap.

79

COUNTSTR(",") 0
COUNTSTR('a','abcdef") 1
COUNTSTR(0,0) 1
COUNTSTR('a','def") 0
COUNTSTR('a",") 0
COUNTSTR(",'def") 0
COUNTSTR(‘abc','abcdef") 1
COUNTSTR('abcdefg’,'abcdef’ 0
COUNTSTR('abc','abcdefabccdabced’) 3

CRYPT(string, salt) - (REGINA)

Encrypts the givestring using the suppliedalt and returns the encrypted string. Only the first two
characters ofalt are used. Not all operating systems support encryption, and on these platforms, the
string is returned unchanged. It is also important to note that the encrypted stringadatae

between platforms.

- CRYPT(a string’, '1x) 'IXYWPPWI1zRJs' /* maybe */

DATATYPE(string [,option]) - (ANSI)

With only one parameter, this function identifies the "datatypstrofg. The value returned will be
"NUM If stringis a validREXX number. Otherwise CHAR is returned. Note that the
interpretation of whethestring is a valid number will depend on the current settinjOMERIC

If optionis specified too, it will check string is of a particular datatype, and return eitlerdr
"0" depending on whethetring is or is not, respectively, of the specified datatype. The possible
values ofoptionare:

[A]
(Alphanumeric) Consisting of only alphabetic characters (in upper, lower or misedasral
decimal digits.
[B]
(Binary) Consisting of only the two binary dig@sandl. Note that blanks are not allowed
within string, as would have allowed been within a binary string.
[L]
(Lower) Consisting of only alphabetic characters in lower case.
M]
(Mixed) Consisting of only alphabetic characters, but the case does not mattgpee
lower or mixed.)
[N]
(Numeric) Ifstringis a validREXX number, i.eDATATYPEGt r i ng) would returnrNUM
[S]

(Symbolic) Consists of characters that are leg&EXX symbols. Note that this test will
pass several strings that are not legal symbols. The characters includesmlssnd the
decimal point.

80

[U]
(Upper) Consists of only upper case alphabetic characters.

W]
(Whole) If string is a validREXX whole number under the current settindN&fMERIC
Note thatl3.0 is a whole number since the decimal part is zero, vil3iEe+1 is not a
whole number, since it must be interpreted as 130 plus/minus 5.

[X]

(Hexadecimal) Consists of only hexadecimal digits, i.e. the decimal digi&n@-the
alphabetic characters A-F in either case (or mixed.) Note that blanks arkwetalvithin
string, as it would have been within a hexadecimal string.

If you want to check whether a string is suitable as a variable name, you should consgigreusi
SYMBOL() function instead, since ttf&/mbolic option only verifies which charactestring
contains, not the order. You should also take care to watch out for lower case alphabetiershara
which are allowed in the tail of a compound symbol, but not in a simple or stem symbol or in the
head of compound symbol.

Also note that the behavior of the optioghd., MandU might depend on the setting of language, if
you are using an interpreter that supports national character sets.

DATATYPE(- 1.35E-5 ") 'NUM®
DATATYPE('1E999999999) 'CHAR!
DATATYPE('1E9999999999") 'CHAR!
DATATYPE(! @#8#$(&*%") 'CHAR'
DATATYPE('FooBar','A") '
DATATYPE(Foo Bar','A") 0"
DATATYPE('010010111101','B") '
DATATYPE('0100 1011 1101','B") '0'
DATATYPE(foobar','L’) '
DATATYPE('FooBar','M’) '
DATATYPE(-34E3',N") '
DATATYPE(A_SYMBOL!?!",'S") '
DATATYPE('1.23.39E+4.5','S) '
DATATYPE('Foo bar','S") 0"
DATATYPE(FOOBAR','U') '
DATATYPE('123deadbeef','X") '

DATE([option_out [,date [,option_in]]]) - (ANSI)

This function returns information relating to the current date. lbgt®n_outcharacter is
specified, it will set the format of the return string. The default valuegton_outis "N".

Possible options are:

81

[B]
(Base) The number of complete days from Januafp01 until yesterday inclusive, as a
whole number. This function uses the Gregorian calendar extended backwards. Therefore
Date('B") // 7 will equal the day of the week where 0 corresponds to Monday and 6 Sunday.

[C]
(Century) The number of days in this century from January00 until today, inclusive.
The return value will be a positive integer.

[D]
(Days) The number of days in this year from Janudmyntil today, inclusive. The return
value will be a positive integer.

[E]
(European) The date in European format, de/thm/yy ". If any of the numbers is single
digit, it will have a leading zero.

M]
(Month) The unabbreviated name of the current month, in English.

[N]
(Normal) Return the date with the name of the month abbreviated to three lettesiyit
the first letter in upper case. The format will llel'Mmm yyyy ", whereMmnis the month
abbreviation (in English) andd is the day of the month, without leading zeros.

[O]
(Ordered) Returns the date in the ordered format, whigtyisntn/dd ".

[S]
(Standard) Returns the date according the format specified by Internationar@&anda
Organization Recommendation ISO/R 2014-1971 (E). The format wilhyshmdd", and
each part is padded with leading zero where appropriate.

[U]
(USA) Returns the date in the format that is normally used in USAmm/dd/yy ", and
each part is padded with leading zero where appropriate.

W]
(Weekday) Returns the English unabbreviated name of the current weekday for today. The
first letter of the result is in upper case, the rest is in lower case.

[T]

(time_) Returns the current date/time in UNtXe_tformat. time_tis the number of
seconds since January11970.

Note that the C' option is present iIREXX language level 3.50, but was removed in level 4.00.
The new B" option should be used instead. When porting code that us€'tbetion to an
interpreter that only have th8" option, you will can use the conversion that Janu&@idQDO0 is day
693595 in the Gregorian calendar.

Note that none of the formats in whiDATE() return its answer are effected by the settings of
NUMERICAIso note that if there are more than one caDAdE() (andTIME()) in a single
clause oREXX code, all of them will use the same basis data for calculating the date (and time)

If the REXX interpreter contains national support, some of these options may return different output
for the names of months and weekdays.

82

Assuming that today is Januar{y 8992:

DATE('B") 727203
DATE('C) '833609'
DATE('D") '6'
DATE(E") '06/01/92'
DATE('M") ‘January"'
DATE('N") '6 Jan 1992’
DATE('O") '92/01/06'
DATE('S") '19920106
DATE('U") '01/06/92'
DATE('W) Monday'
DATE(T) 694620000

If the dateoption is specified, the function provides for date conversions. The optionah_in
specifies the format in whiattateis supplied. The possible values émtion_inare:
BDEOUNST.

The default value fooption_inis N.

DATE('O','13 Feb 1923 '23/02/13'
DATE('O','06/01/50','U") '50/06/01'

If the datesupplied does not include a century in its format, then the result is chosen to make the
year within 50 years past or 49 years future of the current year.

The date conversion capability of the DATE BIF was introduced with the ANSI standard.

DELSTR(string, start [,length]) - (ANSI)

Returnsstring, after the substring of lengtbngthstarting at positiostart has been removed. The
default value fotengthis the rest of the stringtartmust be a positive whole number, whaeagth
must be a non-negative whole number. It is not an erstaritor length(or a combination of
them) refers to more characters tistning holds

DELSTR('Foobar',3) 'Foo’
DELSTR('Foobar',3,2) 'Foor"
DELSTR('Foobar',3,4) 'Foo’
DELSTR('Foobar',7) 'Foobar’
DELWORD(string,start[,length]) (ANSI)

Removedengthwords and all blanks between them, frsimng, starting at word numbetart The
default value fotengthis the rest of the string. All consecutive spaces immediately after the las
deleted word, but no spaces before the first deleted word is removed. Nothing is rerfenggti if

IS zero.

83

The valid range oétartis the positive whole numbers; the first wordsiring is numbered.. The
valid range ofengthis the non-negative integers. It is not an errgtaft or length(or a
combination of them) refers to more words teting holds.

DELWORD('This is a test',3) ‘This is'
DELWORD('This is a test',2,1) ‘This a test'
DELWORD('This is a test',2,5) This'

DELWORD('This is a test',1,3) 'test' /*No leading space*/

DESBUF() - (CMS)

This function removes all buffers on the stack, it is really just a way of claaenghole stack for
buffers as well as strings. Functionally, it is equivalent to execiRQPBURvith a parameter of
0. (Actually, this is a lie, sincBROPBUIRs not able to take zero as a parameter. Rather, it is
equivalent to executinQROPBURvith 1 as parameter and then execudigOPBURvithout a
parameter, but this is a subtle point.) It will return the number of buffers left oratikeadter the
function has been executed. This shoul@ lxe all cases.

- DESBUF() 0
DIGITS() - (ANSI)

Returns the current precision of arithmetic operations. This value is set usikigMieRIC
statement. For more information, refer to the documentaticfitMERIC

~ DIGITS() '9' I* Maybe */
DIRECTORY(([new directory]) - (0S/2)

Returns the current directory for the running process, and optionally changes diettery t
specifiednew directory If thenew directoryexists, and the changeriew directorysucceeds, the
new directoryis returned. If th@ew directorydoes not exist or an error occurred changing to that
new directory the empty string is returned.

DIRECTORY() ‘tmp’ /* Maybe */

DIRECTORY (‘c:\temp’) ‘c:temp' /* Maybe */
D2C(integer [,length]) - (ANSI)
Returns a (packed) string, that is the character representatraagsr, which must be a whole
number, and is governed by the settingslOMERIC not of the internal precision of the built-in
functions. Iflengthis specified the string returned will Engthbytes long, with sign extension. If
length(which must be a non-negative whole number) is not large enough to hold the result, an error
is reported.

If lengthis not specifiedintegerwill be interpreted as an unsigned number, and the result will have

84

no leading <nul> characters. ifitegeris negative, it will be interpreted as a two's complement, and
lengthmust be specified.

D2C(0) "
D2C(127) =
D2C(128) '80'x
D2C(128,3) 000080'x
D2C(-128) 80'
D2C(-10,3) 'FF5'x

D2X(integer [,length]) - (ANSI)

Returns a hexadecimal number that is the hexadecimal representatitmgef Integermust be a
whole number under the current settingl&fMERIC it is not effected by the precision of the
built-in functions.

If lengthis not specified, themtegermust be non-negative, and the result will be stripped of any
leading zeros.

If lengthis specified, then the resulting string will have that length. If necessatiil,beveign-
extended on the left side to make it the right lengtlenigthis not large enough to hoidteger, an
error is reported.

D2X(0) 0"
D2X(127) TF
D2X(128) '80'
D2X(128,5) '00080'x
D2X(-128) 80'
D2X(-10,5) 'FHff5'x

DROPBUF([number]) - (CMS)

This function will remove zero or more buffers from the stack. Called without a paramevill
remove the topmost buffer from the stack, provided that there were at least one bb#estack.
If there were no buffers in the stack, it will remove all strings in the stackemewve the zeroth
buffer.

If the parametenumberwas specified, and the stack contains a buffer with an assigned number
equal tonumber then that buffer itself, and all strings and buffers above it on the stack will be
removed; but no strings or buffers below the numbered buffer will be toucmeainiferrefers to a
buffer that does not exist in the stack; no strings or buffers in the stack is touched.

As an extra extension, Regina theDROPBUF() built-in function can be given a non-positive
integer as parameter. If the name is negative then it will convert that numtseatbsolute value,

and remove that many buffers, counted from the top. This is functionally equivalent tongepeati
DROPBUF() without parameters for so many times as the absolute value of the negative number

85

specifies. Note that usinQ as parameter is equivalent to removing all strings and buffers in the
stack, since0 is equivalent to normdl. The number is converted during evaluation of parameters
prior to the call to th®ROPBUF() routine, so the sing is lost.

The value returned from this function is the number of buffers left on the stack afterfdre touf
be deleted have been removed. Obviously, this will be a non-negative integer. This too, deviates
from the behavior of thBROPBUEommand under CMS, where zero is always returned.

DROPBUF(3) 2 [* remove buffer 3 and 4 */
DROPBUF(4) 0 /* no buffers on the stack */
DROPBUK() 4 [* if there where 5 buffers */

EOF(file) - (AREXX)

Checks the specified logichlle name and returns the boolean value 1(True) if the end-of-file has
been reached, and O(False)otherwise.

- EOF(infile’) '1' /* maybe */

ERRORTEXT(errno [, lang]) - (ANSI)

Returns thd&REXX error message associated with error nurebero. If thelang character is
specified, it will determine the native language in which the error messegarised. The default
value forlangis "N".

Possible options are:

[N]

(Normal) The error text is returned in the default native language.
[S]

(Standard English) The error text is returned in English.

For more information on how Regina supports different native languagdsaisee L anguage
Support.
If the error message is not defined, a nullstring is returned.

The error messages REXX might be slightly different between the various implementations. The
standard says thatrno must be in the range 0-99, but in some implementations it might be within a
less restricted range which gives room for system specific messageshodtaiia general not

assume that the wordings and ordering of the error messages are constant bgileesmiations

and systems.

ERRORTEXT(20) ‘Symbol expected'
ERRORTEXT(30) ‘Name or string too long'
‘ ERRORTEXT(40) ‘Incorrect call to routine’

86

errno can also be specified as @mno followed by a sub error number, with a period between. The
resulting string will be the text of the sub-error number with placemarkersiimgjavhere
substitution values would normally be placed.

ERRORTEXT(40.24) <bif> argument 1 must be a binary string;
found "<value>"

Regina also supports messages in several native languages. See the sBictive branguage
Support for details on how this is configured. WIIiE as the native language in effect:

ERRORTEXT(40.24) Routine <bif>, Argument 1 mul} eine
Binatzeichenkette sein; "<value>"
ERRORTEXT <bif> argument 1 must be a binary string;
(40.24,'S") found "<value>"

EXISTS(filename) - (AREXX)

Tests whether the specified name of the giilenameexists. Thdilenamestring may include any
portion of a full file path specification. Note that the argument is not a logiealdiine used in
other ARexx file functions. A more portable equivalent of this is to use the 'QUERYTESX
command of the STREAM BIF.

‘ EXISTS('c:\temp\infile.txt") 1 /* mayb% */
EXPORT (address, [string], [length] [,pad]) - (AREXX)

Copies data from the (optional) string into a previously-allocated memory areh, wast be
specified as a 4-byddress Thelengthparameter specifies the maximum number of characters to
be copied; the default is the length of the string. If the sped#regthis longer than the string, the
remaining area is filled with thead character or nulls('00'x). The returned value is the number

of characters copied.

Caution isadvised in using thisfunction. Any area of memory can be overwritten,possibly
causing a system crash.

See also STORAGE() and IMPORTY().

Note that theaddressspecified is subject to a machine's endianess.

EXPORT('0004 0000'%,"The answer') '10'

FILESPEC(option, filespec) - (0S/2)

Returns the specified portion of a pasBespec, depending on theption passed.
Possible options are:

[Drive]

The file's drive. On platforms that don't have the concept of a drive letter, returns blank.
[Name]

The file's name. This is the string following the last path delimiter (ietlseone).
[Path]

The file's path. This is the string up to, but not including the last path delimiter.

87

Only the first letter obptionis required.

FILESPEC('Drive','C:\config.sys') 'C'
FILESPEC('Name','C:\config.sys') ‘config.sys'
FILESPEC('Path’,'C:\config.sys’) \'
FILESPEC('Drive','/usr/bin/regina’) "
FILESPEC('Name','/usr/bin/regina’) 'regina’
FILESPEC('Path’,'/usr/bin/regina’) ‘fusr/bin’

FIND(string, phrase) - (CMS)

Searchestring for the first occurrence of the sequence of blank-delimited waltdsse and return
the word number of the first word phrasein string. Multiple blanks between words are treated as
a single blank for the comparison. Returns ghifasenot found. Deprecated: see WORDPOS().

‘ FIND('now is the time','is the time’) 2 ‘ ‘
FIND('now is the time'is the') 2
FIND('now is the time','is time’) 0

FORK() - (REGINA)

This function spawns a new process as a child of the current process at the currenthgoint in t
program where FORK is called. The program then continues from this point as twadesepara
processes; the parent and the child. FORK returns 0 to the child process, and the prodess id of t
child process spawned to the parent (always non-zero). A negative return valuesrahcater

while attempting to create the new process. FORK is not available on all patfoFORK is not
supported, it will always return '1". It is safe to assume that a return value eélis that FORK is

not supported. All platforms AFAIK, will never return '1" as a child process id; that musnbe
usually reserved for the first process that starts on a machine.

~ FORK()
|

FORM() - (ANSI)

'0" /* To child */ |
'3456' /* maybe to parent */ ‘

Returns the current "form", in which numbers are presented when exponential form ishissed. T
might be eitheSCIENTIFIC (the default) oENGINEERING This value is set through the
NUMERIC FORMIlause. For more information, see the documentatiddWMERIC

- FORM() 'SCIENTIFIC' /* Maybe */

FORMAT (number [,[before] [,[after] [,[expp] [,[expt]]]]]) - (ANSI)

This function is used to control the format of numbers, and you may request the size andhformat i
which the number is written. The parametamberis the number to be formatted, and it must be a
valid REXX number. note that before any conversion or formatting is done, this number will be

88

normalized according to the current settingN&fMERIC

Thebeforeandafter parameters determines how many characters that are used before and after the
decimal point, respectively. Note thaforedoesnot specify the number of digits in the integer

part, it specifies the size of the field in which the integer part of the numbattenwRemember to
allocate space in this field for a minus too, if that is relevant. If the field i®ngtdnough to hold

the integer part (including a minus if relevant), an error is reported.

Theafter parameter will dictate the size of the field in which the fractional part afuheber is
written. The decimal point itself is not a part of that field, but the decimal poinbevdmitted if
the field holding the fractional part is empty. If there are less digits in the mihamethe size of
the field, it is padded with zeros at the right. If there is more digits then it ibleossfit into the
field, the number will be rounded (not truncated) to fit the field.

Beforemust at least be large enough to hold the integer parttrober Therefore it can never be
less tharl, and never less thafor negative numbers. The integer field will have no leading zeros,
except a single zero digit if the integer parhamberis empty.

The parametezxppthe size of the field in which the exponent is written. This is the size of the
numeric part of the exponent, so ti# and the sign comes in addition, i.e. the real length if the
exponent is two more thaxppspecifies. liexppis zero, it signalizes that exponential form should
not be usedExppmust be a non-negative whole numbeexppis positive, but not large enough
to hold the exponent, an error is reported.

Exptis the trigger value that decides when to switch from simple to exponential formalNorthe
default precisionNUMERIC DIGITS) is used, but iexptis set, it will override that. Note that if
exptis set to zero, exponential form will always be used. Howevexpiftries to force exponential
form, simple form will still be used #xppis zero. Negative values fexptwill give an error.
Exponential form is used if more digits thexptis needed in the integer part, or more than twice
exptdigits are needed in the fractional part.

Note that thafter number will mean different things in exponential and simple forraftdf is set
to e.g.3, then in simple form it will force the precision to 0.001, no matter the magnitude of the
number. If in exponential form, it will force the number to 4 digits precision.

FORMAT(12.34,3,4) '12.3400'
FORMAT(12.34,3,,3,0) ' 1.234E+001'
FORMAT(12.34,3,1) ' 12.3400'
FORMAT(12.34,3,0) '12.3'
FORMAT(12.34,3,4) ‘2!
FORMAT(12.34,,,,0) '1.234E+1"
FORMAT(12.34,,,0) '12.34'
FORMAT(12.34,,,0,0) '12.34'

FREESPACE(address, length) - (AREXX)

Returns a block of memory of the giviemgthto the interpreter's internal pool. The address
argument must be a 4-byte string obtained by a prior call to GETSPACE(),theliatlercetor. It is

89

not always necessary to release internally-allocated memory,sinitlebg weleased to the system
when the program terminates. However,if a very large block has been allocateishgatuo the
pool may avoid memory space problems. The return value is a boolean success flag.

See also GETSPACE()

- FREESPACE('00042000'x,32) 7
FUZZ() - (ANSI)

Returns the current number of digits which are ignored when comparing numbers, duringroperati
like = and>. The default value for this &. This value is set using tiUMERIC FUZZstatement,
for more information see that.

- FUzZ()

'0' /* Maybe */
GETENV(environmentvar) - (REGINA)
Returns the named UNIX environment variable. If this variable is not defined, a nglistri
returned. It is not possible to use this function to determine whether the variable wasryose
set to the nullstring.
This function is now obsolete, instead you should use:
VALUE(environmentvar, ,'SYSTEM")
GETPID() - (REGINA)

Returns the process id of the currently running process.

- GETPID() '234' [* Maybe */
GETSPACE(length) - (AREXX)

Allocates a block of memory of the specified length from the interpreter'sahfgvol. The
returned value is the 4-byte address of the allocated block, which is not cleared orsetherwi
initialized. Internal memory is automatically returned to the system wheRetkee program
terminates,so this function

should not be used to allocate memory for use by external programs.

See also FREESPACE()

- GETSPACE(32) '0003BF40' /* maybe */

GETTID() - (REGINA)
Returns the thread id of the currently running process.

- GETTID() '2' [* Maybe */

90

HASH(string) - (AREXX)

Returns the hash attribute of a string as a decimal number,and updates the intern&ldashhea
string.

- HASH(1') '49'

IMPORT (address [,length]) - (AREXX)

Creates a string by copying data from the specified 4dndeess If the lengthparameter is not
supplied,the copy terminates when a null byte is found.

See also EXPORTY()

Note that theaddressspecified is subject to a machine's endianess.

‘ IMPORT('0004 0000'x,8) 'Th# answer' /* maybe */

INDEX(haystack, needle [,start]) - (CMS)

Returns the character position of the striegdlein haystackIf needleis not found, O is returned.
By default the search starts at the first character of haystki§ 1). This can be overridden by
giving a differentstart, which must be a positive, whole number. See POS function for an ANSI
function that does the same thing.

INDEX('abcdef','cd") '3
INDEX(‘abcdef’,'xd") (0}
INDEX('abcdef','bc',3) ‘0’

INDEX(‘abcabc','bc',3) '5'
INDEX('abcabc','bc’,6) '0'

INSERT(stringl, string2 [,position [,length [,padchar]]]) - (ANSI)

Returns the result of insertirsgringlinto a copy ostring2 If positionis specified, it marks the
character irstring2whichstringlit to be inserted aftePositionmust be a non-negative whole
number, and it defaults @ which means thatring2is put in front of the first character stringl

If lengthis specifiedstringlis truncated or padded on the right side to make it exacidyth
characters long before it is inserted. If padding occurs,ghdoharis used, or <space>pldchar
IS undefined.

INSERT((first','SECOND) 'SECOND(first’
INSERT(‘first','SECOND',3) 'fiISECONDrst'
INSERT(‘first','SECOND',3,10) fISECOND rst'
INSERT((‘first',' SECOND',3,10,*") fISECOND****rst'
INSERT(‘first','SECOND',3,4) fISECOrst'
INSERT(‘first','SECOND',8) 'first SECOND'

91

JUSTIFY(string, length [,pad]) - (CMS)

Formats blank-delimited words string, by addingpad characters between words to justify to both
margins. That is, to widtlength(lengthmust be non-negative). The defaudid character is a

blank.

string is first normalized as though SPAGHE(ng) had been executed (that is, multiple blanks are
converted to single blanks, and leading and trailing blanks are removedytHis less than the

width of the normalized string, the string is then truncated on the right and any toéalnkgs
removed. Extrgadcharacters are then added evenly from the left to right to provide the required
length, and the blanks between words are replaced withatheharacter.

JUSTIFY('The blue sky',14) ‘The I#)Iue sky'
JUSTIFY('The blue sky',8) ‘The blue’
JUSTIFY('The blue sky',9) ‘The blue'
JUSTIFY('The blue sky',9,'+") ‘The++blue'

LASTPOS(needle, haystack [,start]) - (ANSI)

Searches the strirtaystaclfor the stringneedlg and returns the position raystackof the first
character in the substring that matcheédle The search is started from the right side, seédle
occurs several times, the last occurrence is reported.

If startis specified, the search starts at character nuatagiin haystack Note that the standard
only states that the search starts astheth character. It is not stated whether a match can partly be
to the right of thestart position, so some implementations may differ on that point.

LASTPOS('be’, To be or not to be') 17
LASTPOS('to',to be or not to be',10) 3
LASTPOS(is',to be or not to be’) 0
LASTPOS('to',to be or not to be',0) 0

LEFT(string, length [,padchar]) - (ANSI)

Returns théengthleftmost characters istring. If length(which must be a non-negative whole
number) is greater than the lengthstiing, the result is padded on the right with <space> (or
padcharif that is specified) to make it the correct length.

LEFT('Foo bar',5) 'Foo b’
LEFT('Foo bar',3) 'Foo’
LEFT('Foo bar',10) 'Foo bar '
LEFT('Foo bar',10,*") 'Foo bar***'

LENGTH(string) - (ANSI)

Returns the number of charactersinng.

92

LENGTH(") ‘0’

LENGTH('Foo) '8

LENGTH('Foo bar’) T

LENGTH(foo bar ") '10°
LINEIN([streamid][,[line][,count]]) (ANSI)

Returns a line read from a file. When ostyeamidis specified, the reading starts at the current
read position and continues to the first End-Of-Line (EOL) mark. Afterward, thentwead
position is set to the character after the EOL mark which terminated the reatespdf the
operating system uses special characters for EOL marks, these are netirbyuas a part of the
string read..

The default value fostreamidis default input stream. The format and range of the s$tiregmid
are implementation dependent.

Theline parameter (which must be a positive whole number) might be specified to set the curre
position in the file to the beginning of line numkiae before the read operation startdiné is
unspecified, the current position will not be changed before the read operation. Nine thainly
valid for persistent steams. For transient streams, an error is repdinedsfspecified. The first

line in the stream is numberéd

Countspecifies the number of lines to read. However, it can only take the Gatunell . When it
is 1 (which is the default), it will read one line. When iDig will not read any lines, and a
nullstring is returned. This has the effect of setting the current read positionfité théne was
specified.

What happens when the functions finds a End-Of-File (EOF) condition is to some extent
implementation dependent. The implementation may interpret the EOF as an iBmli€itf-Line
(EOL) mark is none such was explicitly present. The implementation may also thoase the
NOTREADYondition flag (this condition is new froREXX language level 4.00).

Whether or nostreammust be explicitly opened before a read operation can be performed, is
implementation dependent. In many implementations, a read or write operation wdltlgnppen
the stream if not already open.

Assuming that the fil@mp/file contains the three lines=itst line", Second lineand "Third
line":

LINEIN('/tmpf/file’,1) 'First line'

LINEIN('/tmp/file’) ‘Second line'
LINEIN('/tmp/file’,1,0) " [* But sets read position */
LINEIN('/tmpf/file’) 'First line'

LINEIN() 'Hi, there!" /* maybe */

93

LINEOUT ([streamid] [,[string] [,line]]) - (ANSI)

Returns the number of lines remaining after having positioned the sttesamidto the start of

line line and written oustring as a line of text. I§treamidis omitted, the default output stream is

used. Ifline (which must be a positive whole number) is omitted, the stream will not be repositioned
before the write. I&tring is omitted, nothing is written to the streamstling is specified, a
system-specific action is taken after it has been written to stream,kamaw line.

The format and contents of the first parameter will depend upon the implementation and how it
names streams. Consult implementation-specific documentation for more indormat

If stringis specified, but ndine, the effect is to writstring to the stream, starting at the current
write position. Ifline is specified, but nattring, the effect is only to position the stream at the new
position. Note that thene parameter is only legal if the stream is persistent; you can not position
the current write position for transient streams.

If neitherline norstring is specified, the standard requires that the current write position is set the
end of the stream, and implementation specific side-effects may occur. legrus means that

an implementation can use this situation to do things like closing the stream, or fihehougput.
Consult the implementation specific documentation for more information.

Also note that the return value of this functions may be of little or no value, If just enkal |
written, 1 may still be returned, and there are no way of finding out how much (if astfjraf was
written. If string is not specified, the return value will alwayseeven ifLINEOUT() was not
able to correctly position the stream.

If it is impossible to correctly writstring to the stream, tiHOTREADYlag will be raised. It is not
defined whether or not tiéfOTREADYlag is raised whehINEOUT() is used for positioning, and
this is not possible.

Note that if you writestring to a line in the middle of the stream (iiae is less than the total
number of lines in the stream), then the behavior is system and implementatiorc.spenit
systems will truncate the stream after the newly written line, otheomh truncate if the newly
written line has a different length than the old line which it replaced, and yet oskemsywill
overwrite and never truncate.

In general, consult your system and implementation specific documentation for noomeaitndn
about this function. You can safely assume very little about how it behaves.

LINEOQUT(,'First line") ‘1
LINEOUT('/tmp/file','Second line',2) 1
LINEOUT('/tmp/file’,' Third line") 1
LINEOUT('/tmp/file','Fourth line',4) '0'

LINES([streamid] [,option]) - (ANSI)

Returns 1 if there is at least one complete line remaining in the namsiulddenor O if no
complete lines remain in the file. A complete line is not really as compléte asme might
indicate; a complete line is zero or more characters, followed by an End-OBH0hg fharker. So,

94

if you have read half a line already, you still have a "complete" line left. Noté ihawot defined
what to do with a half-finished line at the end of a file. Some interpreters migipreitthe End-
Of-File as an implicit EOL mark too, while others might not.

The format and contents of the stresineamidis system and implementation dependent. If omitted,
the default input stream will be used.

The ANSI Standard has extended this function from TRL2. It allovepaon

[C]
(Count) Returns the actual number of complete lines remaining in the streapgatines of
how expensive this operation is.

[N]
(Normal) Returns 1 if there is at least one complete line remaining in tloe @l€ no lines
remain. This is the default. To maintain backwards compatibility with olderseses
Regina, the OPTION; NOFAST_LINES BIF_DEFAULT can be used to make the default
option behave as though LINES(streamid,'C") was specified.

LINES will only return O or 1 for all transient streams, as the interpreter cappuition in these
files, and can therefore not count the number of remaining lines.

As a result, defensive programming indicates that you can safely only assuthesthatction will
return eithe© or a non-zero result. If you want to use the non-zero result to more than just an
indicator on whether more lines are available, you must check that it is larger th#frsongou
can safely assume that it hold the number of available lines left.

As with all the functions operating on streams, you can safely assume vegplittiethis function,
so consult the system and implementation specific documentation.

LINES() '1' [* Maybe */
LINES() '0' /* Maybe */
LINES('/tmpf/file’,'C") '2' [* Maybe */
LINES('/tmp/file") "1' [* Maybe */

LOWER(string) - (REGINA)

Translates the string to lower case. If a specific locale is set (viashéch), then the string is set
to the correct lowercase values based on that locale.

‘ LOWER('One Fine Day") ‘one fine day'

MAKEBUF() - (CMS)

Creates a new buffer on the stack, at the current top of the stack. Each new buffeasgighed a
number; the first buffer being assigned the nunib& new buffer will be assigned a number
which is one higher than the currently highest number of any buffer on the stack. In ptastice, t
means that the buffers are numbered, with the bottom-most having the rduariethe topmost
having a number which value is identical to the number of buffers currently in the stack.

95

The value returned from this function is the number assigned to the newly created Imaffer. T
assigned number will be one more than the number of buffers already in the stack, so the numbers
will be "recycled". Thus, the assigned numbers will not necessarily be in sequence.

MAKEBUF() 1 /* if no buffers existed */
MAKEBUF() 6 /* if 5 buffers existed */

MAX(numberl [,number2] ...) - (ANSI)

Takes any positive number of parameters, and will return the parameter that hati¢ke hig
numerical value. The parameters may be any WX X number. The number that is returned, is
normalized according to the current settingdBloMERIC so the result need not be strictly equal to
any of the parameters.

Actually, the standard says that the value returned is the first number in thetpatatehich is
equal to the result of adding a positive number or zero to any of the other parameters.titluge tha
definition opens for "strange" results if you are brave enough to play around with thgssetti
NUMERIC FUZZ

MAX(1,2,3,5,4) 5"
MAX(6) '6'
MAX(-4,.001E3,4) 4
MAX(1,2,05.0,4) '5.0"

MIN(number [,number] ...) - (ANSI)

Like MAX(), except that the lowest numerical value is returned. For more informatidl AsE@.

MAX(5,4,3,1,2) '
MAX(6) '6'
MAX(-4,.001E3,4) 4
MAX(1,2,05.0E-1,4) '0.50"

OPEN(file, filename, ['Append’|'Read’|'Write']) - (AREXX)

Opens a file for the specified operation. Tileeargument defines the logical name by which the file
will be referenced. Thilenameis the external name of the file, and may include any portions of a
full file path.

The function returns a boolean value that indicates whether the operation was suddessfus

no limit to the number of files that can be open simultaneously, and all open files ark clos
automatically when the program exits.

See also CLOSE(), READ(), WRITE()

OPEN 1
(‘'myfile','c:\\temp\aa.txt','R")

OPEN('infile','/tmp/fred.txt’) 7'

96

OVERLAY(stringl, string2 [,[start] [,[length] [,padchar]]]) -
(ANSI)

Returns a copy dtring2, totally or partially overwritten bgtringl If these are the only arguments,
the overwriting starts at the first charactesinng2

If startis specified, the first characterstringl overwrites character numbstart in string2 Start
must be a positive whole number, and defaults, tice. the first character stringl If thestart
position is to the right of the end string2, thenstring2is padded at the right hand end to make it
start- 1 characters long, befostringlis added.

If lengthis specified, thestring2will be stripped or padded at the right hand end to match the
specified length. For padding (of both stringayicharwill be used, or <space>padcharis
unspecifiedLengthmust be non-negative, and defaults to the lengstrioig L

OVERLAY('NEW','old-value") 'NEW-value'
OVERLAY('NEW','old-value',4) 'oldNEWIue'
OVERLAY('NEW','old-value',4,5) '0ldNEW e’
OVERLAY('NEW','old-value',4,5,*") 'oldNEW**e'
OVERLAY('NEW','old-value',4,2) ‘oldNEalue’
OVERLAY('NEW','old-value',9) ‘'old-valuNEW'
OVERLAY('NEW!','old-value',12) 'old-value NEW'
OVERLAY('NEW','old-value',12,,*") ‘'old-value**NEW'
OVERLAY('NEW','old-value',12,5,*") ‘'old-value**NEW**"

POOLID() - (REGINA)

Returns the current call level for the current procedure.

POOLID() '1' /* top level */
POOLID() '6'/* 6 h Jevel call nesting
*/

POPEN(command [,stem.]) - (REGINA)

Runs the operating systesommand|f the optionaktem is supplied all output from tr@mmand

is placed in the specified stem variable as a REXX array. Note that only theaodfarstdout can

be captured.

This command is now deprecated. ADDRESS WITH can do the same thing, and can also capture
the command's stderr.

POPEN('ls -I', 'lists.") [* LISTS. stem has list
*/
ADDRESS SYSTEM 'Is -I' WITH OUTPUT /* same as above */
STEM LISTS.

97

POS(needle, haystack [,start]) - (ANSI)

Seeks for an occurrence of the stnirggedlein the stringhaystack If needleis not found, the® is
returned. Else, the position maystackof the first character in the part that matched is returned,
which will be a positive whole number. dfart (which must be a positive whole number) is
specified, the search faeedlewill start at positiorstartin haystack

POS('be’,'to be or not to be’) 4
POS('to','to be or not to be',10) 14
POS('is','to be or not to be’) 0
POS('to','to be or not to be’,18) 0

QUALIFY ([streamid]) - (ANSI)

Returns a name for tletreamid The two names are currently associated with the same resource
and the result of this function may be more persistently associated with thateesour

‘ QUALIFY('../mypath/fred.the’) '/home/rlpark/mypath/fred.the'

QUEUED() - (ANSI)

Returns the number of lines currently in the external data queue (the "stack"hddketstack is
a concept external REXX, this function may depend on the implementation and system Consult
the system specific documentation for more information.

~ QUEUED()
~ QUEUED()

'0' /* Maybe */ |
‘42" [* Maybe */ ‘

RANDOM(max) - (ANSI)
RANDOM([min] [,[max] [,seed]]) - (ANSI)

Returns a pseudo-random whole number. If called with only the first parameterttfeerine will
be used, and the number returned will be in the r@Grigehe value of the first parameter, inclusive.
Then the parametenaxmust be a non-negative whole number, not greater than 100000.

If called with more than one parameter, or with one parameter, which is not thééstcbnd
format will be used. Themin andmaxmust be positive whole numbers, andxcan not be less
thanmin, and the differenceax min can not be more than 100000. If one or both of them is
unspecified, the default faninis 0, and the default famaxis 999.

If seedis specified; (it must be a positive whole number) you may control which numbers the
pseudo-random algorithm will generate. If you do not specify it, it will be set to samaom”
value at the first call tRANDOM()(typically a function of the time). When specifyisged it will
effect the result of the current callRARNDOM()

The standard does not require that a specific method is to be used for generating theapseudo-r
numbers, so the reproducibility can only be guaranteed as long as you use the same iatgement

98

on the same machine, using the same operating system. If any of these changeseednan
produce a different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly indneased c
of turning up than other. If tHREXX implementation uses a 32 bit pseudo-random generator
provided by the operating system and returns the remainder after integer dividitigeit by
difference oimin andmax low numbers are favored if the 232 is not a multiple of that difference.
Supposing that the call RANDOM(100000) and the pseudo-random generator generates any 32
bit number with equal chance, the change of getting a number in the ra8%296 is about
0.000010000076, while the changes of getting a number in the range @02990 is about
0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do not tend to be
random at all. Under one operating system (name withheld to protect the guiltystdma'sy
pseudo-random routine returned numbers where the last binary digit alternated betacgén Ora

that machineRANDOM(1)would return the series 0, 1, 0, 1, 0, 1, O, 1 etc., which is hardly random
at all. You should therefore never trust the pseudo-random routine to give you random numbers.

Note that due to the special syntax, there is a big difference betweeRahiROM(10)and
RANDOM(10,). The former will give a pseudo-random number in the rand® Owhile the latter
will give a pseudo-random number in the rangeQ4®.

Also note that it is not clear whether the standard allowdo be equal tonax so to program
compatible, make sure thaaxis always larger thamin.

RANDOM() '123' /*Between 0 and 999 */
RANDOM(10) '5' [*Between 0 and 10 */
RANDOM(,10) '3' [*Between 0 and 10 */
RANDOM(20,30) ‘27" [*Between 20 and 30 */
RANDOM(,,12345) '7*(?5' /*Between 0 and 999, and sets seed

RANDU([seed]) - (AREXX)

Returns a uniformly-distributed pseudo random number between 0 and 1. The number of digits of
precision in the result is always equal to the current Numeric Digits sa#fitigthe choice of

suitable scaling and translation values, RANDU()can be used to generate pseudomamiens

on an arbitrary interval.

The optionakeedargument is used to initialize the internal state of the random number generator.
See also RANDOM()

\ RANDU() '0.371902021"
RANDU(45) '0.873' [*numeric digits
3*

READCH(file, length) - (AREXX)

Reads the specified number of characters from the given logical file and téemsThe length of

99

the returned string is the actual number of characters read,and may be less #guetited length
if, for example, the end-of-file was reached.
See also READLN()

‘ READCH('infile',10) 'a string o' ‘
READLN(file) - (AREXX)

Reads characters from the given logical file into a string until a "newliveacter is found. The
returned string does not include the "newline".
See also READCH()

READLN('infile") 'a stﬂing of chars'

REVERSE(string) - (ANSI)

Returns a string of the same lengtlst@gg, but having the order of the characters reversed.

~ REVERSE('FooBar') 'raBooF’
REVERSE(' Foo Bar') 'raB ooF
REVERSE('3.14159") '95141.3'

RIGHT((string, length[,padchar]) - (ANSI)

Returns thdéengthrightmost characters string. If length(which must be a non-negative whole
number) is greater than the lengthstiing the result is padded on the left with the necessary
number ofpadchas to make it as long dsngthspecifiesPadchardefaults to <space>.

RIGHT('Foo bar',5) 'o bar'
RIGHT('Foo bar',3) 'bar
RIGHT('Foo bar',10) " Foo bar'
RIGHT('Foo bar',10,*") "***F0o0 bar'

RXFUNCADD(externalname, library, internalname) - (SAA)

Registers thanternalnamen library as an external function callable from with the current program
by referencingexternalname library is a REXX external function package in the format of shared
library or dynamic link library (DLL)library and internalname are case-sensitivarary is the

base name of the shared library or dynamic link library. On platforms that support DLLsillthe f
name of the external function packagéhsgary.dil. On Unix environments, the full name of the
shared library isiblibrary.a (AIX), liblibrary.sl (HPUX) orliblibrary.so (most other Unixes).
External function packages are searched for in the location where sharedslitr&dld s are

normally found by the operating system. DLLs are normally located in directpaesdied in the
PATH or LIBPATH environment variables. Shared libraries are normally searched for in

LD LIBRARY_PATH orLIBPATH environment variables.

This function returns 0 if the function is registered successfully.

100

RXFUNCADD 0
('SQLLoadFuncs','rexxsql’,'SQLLoadFuncs’)

RXFUNCDROP(externalname) - (SAA)

Removes the specified externalname from the list of external functionshde&ilde called. This
function returns 0 if the function was successfully dropped.

RXFUNCDROP('SQLLoadFuncs') 0

RXFUNCERRMSG() - (REGINA)

Returns the error message associated with the last call to RXFUNCADDfubtion is generally
used immediately after a failed call to RXFUNCADD to determine whyléda

‘ RXFUNCERRMSG() ‘ 'rexxsql.dll not found' /* Maybe */

RXFUNCQUERY (externalname) - (SAA)

Returns 0 if thexternalnames already registered, or 1 if tegternalnames not registered.

~ RXFUNCQUEURY('SQLLoadFuncs)) 1/ Maybe */

RXQUEUE(command [,queue|timeout]) - (OS/2)

This function interfaces to the Regina internal or external queue mechanisntl@X$
INTERNAL_QUEUES is set, all operations on queues are internal to the interprete

[C]
(Create) Request the interpreter or rxstack to create a new gagellf the queuename
already exists, a new unique queue name is generated. The name of the queue that was
created (either the specified queue or the system-generated queue) is retirgedueA
names are case-insensitive; i.e. the queue name FRED and fred are the same.

[D]
(Delete) Deletes the specifiegdeue The default queue; SESSION becomes the current
queue.

[G]
(Get) Returns the currequeuename.

[S]
(Set) Sets the current queue name todbatiespecified. The previously current queue is
returned. It is valid to set a queue name to a queue that has not been created.

[T]

(Timeout) Sets themeoutperiod (in milliseconds) to wait for something to appear on the
current queue (as set by RXQUEUE('S', queue)). By default, when a line is read from a
gueue will a PULL command, it either returns immediately with the top line indbk, sir

it will wait for a line to be entered by the user via the process' stdin. If O isisgeBlegina
will wait forever for a line to be ready on the stack.

An error will result if an attempt is made to set a timeout on an internal queasutsronly

101

make sense on external queues (ie those with a'@' in them that use the rxstask proces

RXQUEUE('Create") 'S0738280"
RXQUEUE('Create’,'fred’) 'FRED'
RXQUEUE('Create’, 'fred’) 'S88381"
RXQUEUE('Get") $88381'
RXQUEUE('Delete’,'fred’) 'SESSION'
RXQUEUE('Set','fred") 'SESSION'
RXQUEUE('Timeout',10) ‘0’

SEEK(file, offset, [Begin'|'Current’|'End’) - (AREXX)

Moves to a new position in the given logical file, specified asfisetfrom an anchor position. The
default anchor is Current. The returned value is the new position relative to the starfilet

SEEK(infile’,10,'B") 10"
SEEK(infile’,0,'E") '356' /* file length */

SHOW(option, [name], [pad]) - (AREXX)

Returns the names in the resource list specified byghenargument, or tests to see whether an
entry with the specifiedameis available. The currently implemented options keywords are Clip,
Files, Libraries, and Ports, which are described below.

Clip. Examines the names in the Clip List.

Files. Examines the names of the currently open logical file names.

Libraries. Examines the names in the Library List,which are either function librariemctidn
hosts.

Ports. Examine the names in the system Ports List.

If the nameargument is omitted, the function returns a string with the resource nameseskpgrat
blank space or thead character,if one was supplied. If themeargument is given, the returned
boolean value indicates whether tieamewas found in the resource list. Th@meentries are case-
sensitive.

Only theFiles optionis valid on all platforms. All other values foptionare only applicable to the
Amiga and AROS ports.

SIGN(number) - (ANSI)

Returns eitherl , 0 or 1, depending on whetheumberis negative, zero, or positive, respectively.
Numbermust be a vali(REXX number, and are normalized according to the current settings of
NUMERIChefore comparison.

102

SIGN(-12) -1
SIGN(42) 7
SIGN(-0.00000012) 1
SIGN(0.000) 0"
SIGN(-0.0) 0"

SLEEP(seconds) - (CMS)
Pauses for the supplied number of seconds.

- SLEEP(5)

[* sleeps for 5 seconds */

SOURCELINE([linena]) - (ANSI)

If lineno (which must be a positive whole number) is specified, this function will return a string
containing a copy of thREXX script source code on that linelilfenois greater than the number
of lines in theREXX script source code, an error is reported.

If linenois unspecified, the number of lines in REXX script source code is returned.

Note that fromREXX language level 3.50 to 4.00, the requirements of this function were relaxed to
simplify execution when the source code is not available (compiled or pre-paE3eq. An
implementation might make two simplifications: to retQrii called without a parameter. If so, any
call to SOURCELINE() with a parameter will generate an error. The other simplification is to
return a nullstring for any call t8SOURCELINE() with a legal parameter.

Note that the code executed by INE ERPRETclause can not be retrieved 8QURCELINE().

- SOURCELINE() '42' [*Maybe */
SOURCELINE(1) '* This Rexx script will ... */"
SOURCELINE(23) ‘'var = 12' *Maybe */'

SPACE(string|, [length] [,padchar]]) - (ANSI)

With only one parametestring is returned, stripped of any trailing or leading blanks, and any
consecutive blanks insidgring translated to a single <space> charactep#olcharif specified).

Lengthmust be a non-negative whole number. If specified, consecutive blanks stithgare
replaced by exactlengthinstances of <space> (padcharif specified). Howevemadcharwill
only be used in the output string, in the input string, blanks will still be the "magic'ttdataAs a
consequence, if there exist gmgdchas instring, they will remain untouched and will not affect
the spacing.

103

SPACE(' Foo bar’) 'Foo bar'
SPACE(' Foo bar',2) 'Foo bar'
SPACE(' Foo bar',,*") '‘Foo*bar’
SPACE('Foo bar',3, ') 'Foo---bar’
SPACE(Foo bar',,'0") 'Fooobar'

STATE(streamid) - (CMS)

Returns 0 if thestreamidexists, or 1 if it does not. Use STREAM(streamid, 'C', 'QUERY EXISTS")
for portability.

STORAGE([address], [string], [length], [pad]) - (AREXX)

Calling STORAGE() with no arguments returns the available system mernibry.dddress

argument is given, it must be a 4-byte string,and the function copies data from the sfriiogal

into the indicated memory area. Tleagthparameter specifies the maximum number of bytes to be
copied,and defaults to the length of the string. If the specified length is longer thamthee

remaining area is filled with thead character or nulls('00'x.)

The returned value is the previous contents of the memory area. This can be used in a subsequent
call to restore the original contents.

Caution is advised in using this function. Any area of memory can be overwritten,possgihgca
system crash.

- STORAGE() '248400' |
‘ STORAGE('0004 0000'%, The answer") 'quest‘ion' [* maybe */ ‘

STREAM(streamid[,option[,command]]) (ANSI)

This function was added ®EXX in language level 4.00. It provides a general mechanism for
doing operations on streams. However, very little is specified about how the intemalfohttion
should work, so you should consult the implementation specific documentation for more
information.

Thestreamididentifies a stream. The actual contents and format of this string is impétiment
dependent.

Theoptionselects one of several operations WIBAIREAM() is to perform. The possible
operations are:

[C]
(Command) If this option is selected, a third parameter must be presembandwhich is
the command to be performed on the stream. The contertsnofiands implementation
dependent. FdRegina, the valid commands follow. Commands consist of one or more
space separated words.

[D]

(Description) Returns a description of the statstafamid The return value is
implementation dependent.

104

[S]
(Status) Returns a state which describes the stateeaimid The standard requires that it is
one of the followingERRORNOTREADYREADYandUNKNOWNhe meaning of these
are described in the chapt&tream Input and Output.

Note that the optionBescription andStatus really have the same function, but tB&atus
in general is implementation independent, wbigscription is implementation dependent.

Thecommandspecifies the command to be performedstaamid The possible operations are:

[READ]
Open for read access. The file pointer will be positioned at the start of the file, gmdazhl
operations are allowed. This comman&egina-specific; useOPEN READN its place.
[WRITE]
Open for write access and position the current write position at the end of the fileroAn er
is returned if it was not possible to get appropriate access. This comniregina-
specific; use@OPEN WRITEIn its place.
[APPEND]
Open for append access and position the current write position at the end of the file. An
error is returned if it was not possible to get appropriate access. This comrRaqgthis-
specific; useOPEN WRITE APPENDN its place.
[UPDATE]
Open for append access and position the current write position at the end of the file. An
error is returned if it was not possible to get appropriate access. This comrRagghis-
specific; uséOPEN BOTHn its place.
[CREATE]
Open for write access and position the current write position at the start oéthArfilerror
is returned if it was not possible to get appropriate access. This comniegins-
specific; us@OPEN WRITE REPLACEHN its place.
[CLOSE]
Close the stream, flushing any pending writes. An error is returned if it was ndil@dssi
get appropriate access.
[FLUSH]
Flush any pending write to the stream. An error is returned if it was not possible to get
appropriate access.
[STATUS]
Returns status information about the stream in human readable forlRethaa stores
about the stream.
[FSTAT]
Returns status information from the operating system about the stream. Thitsaufredis
least 8 words:
Device Number Under DOS, Win32, OS/2, this represents the disk number, with
0 being Drive A.
Inode Number Under DOS, Win32, OS/2, this is zero.
Permissions User/Group/Other permissions mask. Consists of 3 octal
numbers with 4 representing read, 2 representing write, and 1
representing execute. Therefore a value of 750 is
read/write/execute for user, read/execute for group, and no
permissions for other.
Number Links Under DOS, Win32, OS/2, this will always be 1.

105

User Name The owner of the stream. Under DOS, Win32, OS/2, this will
always be “USER”.

Group Name The group owner of the stream. Under DOS, Win32, OS/2, this
will always be “GROUP”.

Size Size of stream in bytes.

Stream Type One or more of the following:

RegularFile a normal file.
Directory a directory.
Block Special a block special file.
FIFO usually a pipe.
SymbolicLink a symbolic link. If the stream is a symbolic link,
the the details returned are details about the link, not the file the
link points to.
Socket a socket
SpecialName a named special file.
Character Special a character special file.
[RESET]
Resets the stream after an error. Only streams that are resettalbereset.
[READABLE]
Returns 1 if the stream is readable by the user or O otherwise.
[WRITABLE]
Returns 1 if the stream is writable by the user or O otherwise.
[EXECUTABLE]
Returns 1 if the stream is executable by the user or 0 otherwise.
[QUERY]
Returns information about the named stream. If the named stream does not exists, then the
empty string is returned. This command is further broken down into the following sub-

commands:
DATETIME returns the date and time of last modification of the stream in
Rexx US Date format; MM-DD-YY HH:MM:SS.
EXISTS returns the fully-qualified file name of the specified stream.
HANDLE returns the internal file handle of the stream. This will only

return a valid value if the stream was opened explicitly or
implicitly by Regina.
SEEK READ CHAR returns the current read position of the open stream expressed in

characters.

SEEK READ LINE returns the current read position of the open stream expressed in
lines.

SEEK WRITE CHARreturns the current write position of the open stream expressed in
characters.

SEEK WRITE LINE returns the current write position of the open stream expressed in
lines.

SEEK SYS returns the current read position of the open stream as the
operating reports it. This is expressed in characters.

SIZE returns the size, expressed in characters, of the persistent stream.

STREAMTYPE returns the type of the stream. One of TRANSIENT,
PERSISTENT or UNKNOWN is returned.
TIMESTAMP returns the date and time of last modification of the stream. The
format of the string returned is YYYY-MM-DD HH:MM:SS.
You can us€OSITION in place ofSEEK in the above options.

106

[OPEN]

Opens the stream in the optional mode specified. If no optional mode is specified, the

default isSOPEN BOTH
READ

WRITE

BOTH

WRITE APPEND

WRITE REPLACE

BOTH APPEND

BOTH REPLACE

The file pointer will be positioned at the start of the file, and
only read operations are allowed.

Open for write access and position the current write pointer at
the end of the file. On platforms where it is not possible to open
a file for write without also allowing reads, the read pointer will
be positioned at the start of the file. An error is returned if it was
not possible to get appropriate access.

Open for read and write access. Position the current read pointer
at the start of the file, and the current write pointer at the end of
the file. An error is returned if it was not possible to get
appropriate access.

Open for write access and position the write pointer at the end of
the file. On platforms where it is not possible to open a file for
write without also allowing reads, the read pointer will be
positioned at the start of the file.

Open for write access and position the current write position at
the start of the file. On platforms where it is not possible to
open a file for write without also allowing reads, the read pointer
will be positioned at the start of the file. This operation will

clear the contents of the file. An error is returned if it was not
possible to get appropriate access.

Open for read and write access. Position the current read
position at the start of the file, and the current write position at
the end of the file. An error is returned if it was not possible to
get appropriate access.

Open for read and write access. Position both the current read
and write pointers at the start of the file. An error is returned if
it was not possible to get appropriate access.

[SEEK positi on READ|WRITE [CHAR|LINE]]
Positions the file's read or write pointer in the file to the speqiftesition SEEK is a

synonym for POSITION .

position

A position can be of the following formse]ativel offset
relative can be one of:
= The file pointer is moved to the

specifiedoffset relative
to the start of the file. This is the default.

< The file pointer is moved to the
specifiedoffset relative

to the end of the file.

- The file pointer is moved
backwards relative to the

current position.

+ The file pointer is moved forwards
relative to the current
position.

offsetis a positive whole number.

107

READ The read file pointer will be positioned.

WRITE The write file pointer is positioned.
CHAR Theoffsetspecified inpositionabove is in terms of characters.
LINE Theoffsetspecified inpositionabove is in terms of lines.

Assume a file; ''Thome/mark/myfile' last changed March 30th 2002 at 15:07:56, with 10@écles
line 10 characters long, and the following command executed in sequence.

STREAM('myfile','C','QUERY EXISTS') ‘'home/mark/myfile’
STREAM('myfile','C''QUERY SIZE") 1100
STREAM('myfile','C','QUERY TIMESTAMP') 2002-03-30 15:07:56
STREAM('myfile’,'C','QUERY DATETIME') 03-30-02 15:07:56

STREAM('myfile','D")
STREAM('myfile','S") UNKNOWN
STREAM('myfile','C''QUERY SEEK READ)

STREAM('myfile’,'C','OPEN READ") READY:
STREAM('myfile','D")
STREAM('myfile','S") READY
STREAM('myfile','C''QUERY SEEK READ") 1
STREAM('myfile','C','CLOSE") UNKNOWN
STREAM('myfile','C','STATUS")
STREAM('myfile','C','FSTAT") 773 35006 064 1 mark
mark 1100 RegularFile
STREAM('myfile','C','READABLE) 1
STREAM('myfile’,'C','"WRITABLE") 1
STREAM('myfile','C''EXECUTABLE') 0

STREAM('myfile','C','??")

STRIP(string [,[option] [,char]]) - (ANSI)

Returnsstring after possibly stripping it of any number of leading and/or trailing characters. The
default action is to strip off both leading and trailing blanksh#r (which must be a string
containing exactly one character) is specified, that character willippestroff instead of blanks.
Inter-word blanks (ochars if defined, that are not leading of trailing) are untouched.

If optionis specified, it will define what to strip. The possible value®fitionare:
[L]
[T]

(Leading) Only strip off leading blanks, dhnars if specified.
(Trailing) Only strip off trailing blanks, azhars if specified.

[B]
(Both) Combine the effect af andT, that is, strip off both leading and trailing blanks, or

108

chars if it is specified. This is the default action.

STRIP(' Foo bar ') 'Foo bar'
STRIP(' Foo bar','L") 'Foo bar'
STRIP(Foo bar','t") "Foo bar'
STRIP(' Foo bar ','Both’) 'Foo bar'
STRIP('0.1234500',,'0%) 12345
STRIP('0.1234500 ',,'0") 1234500

SUBSTR(string, start [,[length] [,padchar]]) - (ANSI)

Returns the substring efring that starts astart, and has the lengtength Lengthdefaults to the
rest of the stringStartmust be a positive whole, whilengthcan be any non-negative whole
number.

It is not an error fostartto be larger than the lengthstfing. If lengthis specified and the sum of
lengthandstart minus 1 is greater that the lengthstring, then the result will be padded with
padchas to the specified length. The default valuedadcharis the <space> character.

SUBSTR('Foo bar',3) ‘o bar'
SUBSTR('Foo bar',3,3) 'ob
SUBSTR('Foo bar',4,6) "bar '
SUBSTR('Foo bar',4,6,™") ' bar**'
SUBSTR('Foo bar',9,4,*") B!

SUBWORDB(¢ ri ng, start [, | ength])-(ANSI)

Returns the part aftring that starts at blank delimited waosthrt (which must be a positive whole
number). Iflength(which must be a non-negative whole number) is specified, that number of words
are returned. The default value fengthis the rest of the string.

It is not an error to specifengthto refer to more words thastring contains, or fostart andlength
together to specify more words thstning holds. The result string will be stripped of any leading
and trailing blanks, but inter-word blanks will be preserved as is.

SUBWORD('To be or not to be',4) 'not to be'
SUBWORD('To be or not to be',4,2) 'not to'
SUBWORD('To be or not to be',4,5) 'not to be'
SUBWORD('To be or not to be',1,3) To be or'

SYMBOL(name) - (ANSI)

Checks if the stringameis a valid symbol (a positive number or a possible variable name), and
returns a three letter string indicating the result of that chectanikis a symbol, and names a
currently set variable/ARis returned, ihameis a legal symbol name, but has not a been given a

109

value (or is a constant symbol, which can not be used as a variable bldme) returned to signify
that it is a literal. Else, fiameis not a legal symbol name the strBgDis returned.

Watch out for the effect of "double expansioNameis interpreted as an expression evaluating
naming the symbol to be checked, so you might have to quote the parameter.

SYMBOL('Foobar") 'VAR' /* Maybe */
SYMBOL('Foo bar") '‘BAD'
SYMBOL('Foo.Foo bar") 'VAR' /* Maybe */
SYMBOL('3.14) LIT
SYMBOL('.Foo->bar’) 'BiD'

TIME([option_out [,time [option_in]]]) - (ANSI)

Returns a string containing information about the time. To get the time in a pafficaiat, an
option_outcan be specified. The defaolfttion_outis Normal . The meaning of the possible
options are:

[C]

(Civil) Returns the time in civil format. The return value might lle:rmXX', whereXX
are eitheamor pm Thehh part will be stripped of any leading zeros, and will be in the
range 112 inclusive.

[E]

(Elapsed) Returns the time elapsed in seconds since the internal stopwat@rtees $he
result will not have any leading zeros or blanks. The output will be a floating point number
with six digits after the decimal point.

[H]

(Hours) Returns the number of complete hours that have passed since last midnight in the
form "hh". The output will have no leading zeros, and will be in the ran@8.0

[L]

(Long) Returns the exact time, down to the microsecond. This is called the long fdmmat. T
output might beth:mm:ss.mmmmmrh Be aware that most computers do not have a
clock of that accuracy, so the actual granularity you can expect, will be about a few
milliseconds. Théh, mmandss parts will be identical to what is returned by the optidns
MandsS respectively, except that each part will have leading zeros as indicated by the
format.

[M]

(Minutes) Returns the number of complete minutes since midnight, in a format having no
leading spaces or zeros.

[N]

(Normal) The output format ihh:mm:ss ", and is padded with zeros if needed. Fhe
mmandss will contain the hours, minutes and seconds, respectively. Each part will be
padded with leading zeros to make it double-digit.

[R]

(Reset) Returns the value of the internal stopwatch just likeé dpgion, and using the same
format. In addition, it will reset the stopwatch to zero after its contents hasdagen r

[S]

(Seconds) Returns the number of complete seconds since midnight, in a format having no
leading spaces or zeros.

110

[T]
(time_d Returns the current date/time in UNti¥he_tformat. time_tis the number of
seconds since January1970.

Note that the time is never rounded, only truncated. As shown in the examples below, the seconds
do not get rounded upwards, even though the decimal part implies that they are @8siatoto

58. The same applies for the minutes, which are clos&s tihvan to32, but is truncated t82.

None of the formats will have leading or trailing spaces.

Assuming that the time is exactly 14:32:58.987654 on Martt2802, the following will be true:

TIME('C') '2:32pm'’
TIME(E) '0.01200' /* Maybe */
TIME(H') 14

TIME(L) '14:32:58.987654'
TIME(M') '32!

TIME(N') '14:32:58'

TIME(R') '0.430221' /* Maybe */
TIME('S) '58'

If the time option is specified, the function provides for time conversions. The optiptiah_in
specifies the format in whidimeis supplied. The possible values émtion_inare: CHLMNS.
The default value fooption_inis N.

‘ TIME('C','11:27:21") '11:27am'
‘ TIME(N','11:27am’,'C") '11:27:00'

The time conversion capability of the TIME BIF was introduced with the ANSI stédndar
TRACE([setting]) - (ANSI)

Returns the current value of the trace setting. If the stettgngis specified, it will be used as the
new setting for tracing, after the old value have be recorded for the return value. Ntte tha
settingis not an option, but may be any of the trace settings that can be specified to the clause
TRACE except that the numeric variant is not allowed WRACE() . In practice, this can be a
word, of which only the first letter counts, optionally preceded by a question mark.

TRACE() 'C' I* Maybe */
TRACE(N') 'C'
TRACE('?) 'N

TRANSLATE(string [,[tableout] [,[tablein] [,padchar]]]) - (ANSI)

Performs a translation on the characterstiimg. As a special case, if neith@ableinnortableoutis
specified, it will translatstring from lower case to upper case. Note that this operation may depend
on the language chosen, if your interpreter supports national character sets.

111

Two translation tables might be specified as the stiagiein andtableout If one or both of the
tables are specified, each charactestiing that exists intableinis translated to the character in
tableoutthat occupies the same position as the character thdlgin Thetableindefaults to the
whole character set (all 256) in numeric sequence, wableoutdefaults to an empty set.
Characters not itableinare left unchanged.

If tableoutis larger thartablein, the extra entries are ignored. If it is smaller ttadoteinit is
padded wittpadcharto the correct lengtliPadchardefaults to <space>.

If a character occurs more than oncéaiblein only the first occurrence will matter.

TRANSLATE('FooBar') 'FOOBAR'

TRANSLATE 'fOObAR'
(‘'FooBar',/ABFORabfor','abforABFOR')

TRANSLATE('FooBar','abfor") b
TRANSLATE('FooBar','abfor’,,'#") W

TRIM(string) - (AREXX)

Removes trailing blanks from the string argument. A more portable option is to useitimg Tr
option of the STRIP BIF.

TRIM(abc ") "abc'
| c |

TRUNC(number [,length]) - (ANSI)

Returnsnumbertruncated to the number of decimals specifietehgth Lengthdefaults td, that
is return an whole number with no decimal part.

The decimal point will only be present if the is a non-empty decimal patengthis non-zero.

The number will always be returned in simple form, never exponential form, no mattehesha
current settings dlUMERICmight be. Iflengthspecifies more decimals thanmberhas, extra

zeros are appendedléhgthspecifies less decimals thaumberhas, the number is truncated. Note
thatnumberis never rounded, except for the rounding that might take place during normalization.

TRUNC(12.34) 12"
TRUNC(12.99) 12"
TRUNC(12.34,4) '12.3400'
TRUNC(12.3456,2) '12.34'

UNAME([option]) - (REGINA)

Returns details about the current platform. This function is basically a wrapplee 1dnix
command; uname. Valid values fagstionare:
[Al

(All) The default. Returns a string with the all following option values. Equivalent to:

112

UNAME('S") UNAME(N') UNAME(R') UNAME('V') UNAME('M).

Sl (System) The name of the operating system.
M (Nodename) The name of the machine.

[R] (Release) The release of the operating system.
E\I\;]] (Version) The version of the operating system.

(Machine) The machine's hardware type.

Example running Linux Redhat 6.1 on 'boojum’, Athalon K7

UNAME('S) Linux

UNAME(N)) boojum

UNAME(RY) 2.2.12.-20

UNAME('V) #1 Mon Sep 27 10:40:35 EDT 1999
UNAME('M) i686

Example running Windows NT 4.0 on 'VM_NT", Intel Pentium

UNAME('S") WINNT
UNAME(N") VM_NT
UNAME(R)) 0
UNAME('V') 4
UNAME('M') i586

UNIXERROR(errorno) - (REGINA)

This function returns the string associated withdirao error number thagrrorno specifies.
When some UNIX interface function returns an error, it really is a refererazedrror message
which can be obtained througiNIXERROR

This function is just an interface to th&error() function call in UNIX, and the actual error
messages might differ with the operating system.

This function is now obsolete, instead you should use:

~ ERRORTEXT(100 + err or no) |

UPPER(string) — (AREXX/REGINA)

Translates the string to uppercase. The action of this function is equivalent to tRANSIATE
(string),but it is slightly faster for short strings. If a specific lodgsilget (via the -I switch), then the
string is set to the correct uppercase values based on that locale. While teigBIREXX BIF,

it is not necessary to have OPTIONS ANSI_BIFS set to use it.

113

~ UPPER('One Fine Day') ‘'ONE FINE DAY'
USERID() - (REGINA)

Returns the name of the current user. A meaningful name will only be returned on thoseglatf
that support multiple users, otherwise an empty string is returned.

- USERID()

'mark’ /* Maybe */
VALUE(symbol [,[value], [pool]]) - (ANSI)

This function expects as first parameter stsgmbo] which names an existing variable. The result
returned from the function is the value of that variableyihboldoes not name an existing
variable, the default value is returned, andNig&/ALUEcondition is not raised. §ymbolis not a
valid symbol name, and this function is used to access an nREX variable, an error occurs.

Be aware of the "double-expansion” effect, and quote the first parameter ifamgcess

If the optional second parameter is specified, the variable will be set to thgtafedu¢he old value
has been extracted.

The optional paramet@ool might be specified to select a particular pool of variables to search for
symbol The contents and format pbol is implementation dependent. The default is to search in
the variables at the current procedural levdEXX. Whichpools that are available is
implementation dependent, but typically one can set variables in application progiartiseor
operating system.

Note that ifVALUE() is used to access variable in pools outsiddrB¥ X interpreter, the
requirements to format (a valid symbol) will not in general hold. There may be ajnéereents
instead, depending on the implementation and the system. Depending on the validity of the name,
the value, or whether the variable can be set or reaAh®E() function can give error messages
when accessing variables in pools other than the normal. Consult the implementatiotesnd sys
specific documentation for more information.

If it is used to access compound variables inside the interpreter the tail pastfahtiion can take
any expression, even expression that are not normally leB&XiX scripts source code.

The valid values gboolin Regina are one oENVIRONMENT, SYSTEM,
OS2ENVIRONMENT, orpool can be a number representing the call level of the current
procedure, with the first level being 1. It is therefore possible to get and set thefvablsriable in
a higher call level procedure from the current one without the nde-ROQ SE the variable. This
and thePOOL ID() BIF which returns the current call level &egina extensions.

By using this function, it is possible to perform an extra level of interpretation ofadblea

114

VALUE(FOO)) ‘bar'
VALUE(FOO','new ‘bar

VALUE(FOO)) new'
VALUE(USER!',root','SYSTEM)) '‘guest’ /* If SYSTEM exists */
VALUE(USER','SYSTEM)) 'root’

VERIFY (string, ref [,[option] [,start]]) - (ANSI)

With only the first two parameters, it will return the position of the first ctaranstring that is
not also a character in the strirgd. If all characters istring are also iref, it will returnO.

If optionis specified, it can be one of:

[N]
(Nomatch) The result will be the position of the first charactstring that does exist iref,
or zero if all exist irref. This is the default option.

M]
(Match) Reverses the search, and returns the position of the first charattiegithat
exists inref. If none exists imef, zero is returned.

If start (which must be a positive whole number) is specified, the search will start po$itadn in
string. The default value fostartis 1.

VERIFY (‘foobar’,'barfo’) '2'
VERIFY (‘foobar','barfo’,'M") 2'
VERIFY (‘foobar','fob’,'N") '5'
VERIFY (‘foobar','barf','N',3) '3
VERIFY (‘foobar','barf','N',4) ‘0

WORD(string, wordno) - (ANSI)

Returns the blank delimited word numbesrdnofrom the stringstring. If wordno(which must be
a positive whole number) refers to a non-existing word, then a nullstring is returnedstitevil|
be stripped of any blanks.

‘ WORD('To be or not to be',3) ‘or'
WORD('To be or not to be',4) 'not’
WORD('To be or not to be',8) "

WORDINDEX(string, wordno) - (ANSI)

Returns the character position of the first character of blank delimited word nwarkeroin
string, which is interpreted as a string of blank delimited wordswthber(which must be a
positive whole number) refers to a word that does not exsdtiimg, thenO is returned.

115

WORDINDEX('To be or not to be',3) 7'
WORDINDEX('To be or not to be',4) '10°
WORDINDEX('To be or not to be',8) ‘0

WORDLENGTH(string, wordno) - (ANSI)

Returns the number of characters in blank delimited word numimeberin string. If number
(which must be a positive whole number) refers to an non-existent word) teeaturned. Trailing
or leading blanks do not count when calculating the length.

WORDLENGTH('To be or not to be',3) 2'
WORDLENGTH('To be or not to be',4) &
WORDLENGTH('To be or not to be',0) ‘0

WORDPOS(phrase, string [,start]) - (ANSI)

Returns the word number string which indicates at whichhrasebegins, provided thaghraseis a
subphrase détring. If not, O is returned to indicate that the phrase was not found. A phrase differs
from a substring in one significant way; a phrase is a set of words, separated by bayafum
blanks.

For instance,i$ a "is a subphrase ofThis is a phrase ". Notice the different amount of
whitespace betweers"" and 'a".

If startis specified, it sets the word &tring at which the search starts. The default valuestant is
1.

WORDPOS(‘or not','to be or not to be') '3
WORDPOS('not to','to be or not to be') ‘4
WORDPOS('to be','to be or not to be') 1
WORDPOS('to be','to be or not to be',3) '6'

WORDS(string) - (ANSI)

Returns the number of blank delimited words ingtrang.

WORDS('To be or not to be') '6'
WORDS('Hello world'") 2'
WORDS(") ‘0’

WRITECH(file, string) - (AREXX)

Writes the string argument to the given logical file. The returned value isttred aamber of
characters written.

116

WRITECH('outfile'," Testing') 7'

WRITELN(file, string) - (AREXX)

Writes the string argument to the given logical file with a "newline" appendedefiraed value is
the actual number of characters written, including the“newline” character(s)

WRITELN('outfile','Testing') ‘8" [* Unix */
WRITELN('outfile', Testing’) '9' [* DOS */

XRANGE([start] [,end]) - (ANSI)

Returns a string that consists of all the characters $tamithroughend inclusive. The default

value for charactestartis'00'x , while the default value for characerdis 'ff'’x . Without

any parameters, the whole character set in "alphabetic" order is returnechat the tactual
representation of the output frodRANGE() depends on the character set used by your computer.

If the value ofstartis larger than the value ehd the output will wrap around frotff'x to
'00'x . If startorendis not a string containing exactly one character, an error is reported.

XRANGE(A',J') '‘ABCDEFGHIJ
XRANGE(FC'X) 'FCFDFEFF'x
XRANGE(,'05'%) '000102030405'x
XRANGE(FD'x,'04'x) 'FDFEFF0001020304'x

X2B(hexstring) - (ANSI)

Translatenexstringto a binary string. Each hexadecimal digith@xstringwill be translated to four
binary digits in the result. There will be no blanks in the result.

X2B(") "

X2B('466f6f 426172") '‘0100011001101111011011110100001001100001
01110010

X2B('46 6f 6f') ‘0100011001101111011011127"

X2C(hexstring) - (ANSI)

Returns the (packed) string representationexistring Thehexstringwill be converted bytewise,

and blanks may optionally be inserted into hlegstringbetween pairs or hexadecimal digits, to
divide the number into groups and improve readability. All groups must have an even number of
hexadecimal digits, except the first group. If the first group has an odd number of mehdec
digits, it is padded with an extra leading zero before conversion.

X2C(") "
X2C('466f6f 426172") 'FooBar'
X2C('46 6f 6f') 'Foo'

117

X2D(hexstring [,length]) - (ANSI)

Returns a whole number that is the decimal representatioexsfring If lengthis specified, then
hexstringis interpreted as a two's complement hexadecimal number consistinghafther
rightmost hexadecimal numeralshaxstring If hexstringis shorter thamumbery it is padded to the
left with <NUL> characters (that i0'x).

If lengthis not specifiedhexstringwill always be interpreted as an unsigned number. Else, it is
interpreted as an signed number, and the leftmost béxatringdecides the sign.

X2D('03 24') 792"
X2D('0310') 784"
X2D(ffff) '65535'
X2D(ffff',5) '65535'
X2D(ffff' 4) 1
X2D('ff80',3) 128"
X2D('12345',3) '837"

118

3.3 Implementation specific documentation for Regina

3.3.1Deviations from the Standard

* For those built-in functions where the last parameter can be onititgtha allows the last
comma to be specified, even when the last parameter itself has been omitted.

* The error messages are slightly redefined in two ways. Firstly, some ofvéha Bhghtly more
definite text, and secondly, some new error messages have been defined.

* The environments available are described in chapter [not yet written].
e Parameter calling

e Stream I/O

« Conditions

* National character sets

* Blanks

» Stacks have the following extra functionaliBROPBUF(), DESBUF() andMAKEBUF() and
BUFTYPE().

« Random()

* Sourceline

* Time

* Character sets

3.3.2Interpreter Internal Debugging Functions
ALLOCATED([opt i on])

Returns the amount of dynamic storage allocated, measured in bytes. This is thg atlecaied
by themalloc() call, and does not concern stack space or static variables.

As parameter it may take aption, which is one of the single characters:

[Al
It will return a string that is the number of bytes of dynamic memory currefdabagdd by
the interpreter.
[C]
Returns a number that is the number of bytes of dynamic memory that is currentlyiia.use (
not leaked).
[L]

Returns the number of bytes of dynamic memory that is supposed to have been leaked.

119

[S]
This is the default value if you do not specify an option. Returns a string that is nicely
formatted and contains all the other three options, with labels. The format of tigsstri
"Memory: Allocated=XXX, Current=YYY, Leaked=2ZZ

This function will only be available if the interpreter was compiled witiitRACEMEM
preprocessor macro defined.

DUMPTREE()

Prints out the internal parse tree for REXX program currently being executed. This output is not
very interesting unless you have good knowledge of the interpreter's internal sfructur

DUMPVARS()

This routine dumps a list of all the variables currently defined. It also gives aihbbiwhation
which is rather uninteresting for most users.

LISTLEAKED()

List out all memory that has leaked from the interpreter. As a return value, fhedatary that has
been listed is returned. There are several option to this function:

M Do not list anything, just calculate the memory.

A List all memory allocations currently in use, not only that which has been markedked. e
= Only list the memory that has been marked as leaked. This is the default option.
TRACEBACK()

Prints out a traceback. This is the same routine which is called when the intespcetenters an
error. Nice for debugging, but not really useful for any other purposes.

120

3.3.3REXX VMS Interface Functions
F$CVSI
F$CVTIME
F$CVUI
F$DIRECTORY
FSELEMENT
FSEXTRACT
F$FAO
F$FILE_ATTRIBUTES
F$GETDVI
F$GETJPI
F$GETQUI
F$SGETSYI
F$IDENTIFIER
FSINTEGER
F$SLENGTH
F$SLOCATE
F$SLOGICAL
F$SMESSAGE
F$MODE
F$PARSE
F$PID
F$PRIVILEGE
FSPROCESS

F$SEARCH

121

F$SETPRV
F$STRING
F$TIME
F$TRNLNM
F$TYPE

F$SUSER

122

123

4 Conditions

In this chapter, th&EXX concept of "conditions" is described. Conditions allow the programmer
to handle abnormal control flow, and enable him to assign special pie€EX0{ code to be
executed in case of certain incidences.

In the first section the concept of conditions is explained.
» Then, there is a description of how a standard conditidREXX would work, if it existed.

* In the third section, all the existing conditionsREXX are presented, and the differences
compared to the standard condition described in the previous section are listed.

* The fourth sections contains a collections of random notes on the conditREXM

* The last section describes differences, extensions and peculiariRegiima on the of subject
conditions, and the lists specific behavior.

4.1 What are Conditions

In this section, the concept of "conditions" are explained: What they are, how they work, &nd wha
they mean in programming.

4.2 \What Do We Need Conditions for?

4.3 Terminology

First, let's look at the terminology used in this chapter. If you don't get a thorough umdlagstd
these terms, you will probably not understand much of what is said in the rest of this.chapter

[Incident:]
A situation, external or internal to the interpreter, which it is required to respamddaain
pre-defined manners. The interpreter recognizes incidents of several difypesntThe
incident will often have a character of "suddenness”, and will also be independent of the
normal control flow.

[Event:]
Data Structure describing one incident, used as a descriptor to the incident itself.

[Condition:]
Names thdREXX concept that is equivalent to the incident.

[Raise a Condition:]
The action of transforming the information about an incident into an event. This is done
after the interpreter senses the condition. Also includes deciding whether to ignore or
produce an event.

[Handle a Condition:]
The act of executing some pre-defined actions as a response to the event genenaded whe
condition was raised.

[(Condition) Trap:]
Data Structure containing information about how to handle a condition.

[(Trap) State:]
Part of the condition trap.

124

[(Condition) Handler:]
Part of the condition trap, which points to a piecRBKXX code which is to be used to
handle the condition.

[(Trap) Method:]
Part of the condition trap, which defined how the condition handler is to be invoked to
handle the condition.

[Trigger a Trap:]
The action of invoking a condition handler by the method specified by the trap method, in
order to handle a condition.

[Trap a Condition:]
Short of trigger a trap for a particular condition.

[Current Trapped Condition:]
The condition currently being handled. This is the same as the most recent trapped condition
on this or higher procedure level.

[(Pending) Event Queue:]
Data Structure storing zero or more events in a specific order. There are onlyrdne eve
queue. The event queue contains events of all condition types, which have been raised, but
not yet handled.

[Default-Action:]
The pre-defined default way of handling a condition, taken if the trap state for the condition
raised iISOFF

[Delay-Action:]
The pre-defined default action taken when a condition is raised, and the trap BELt& ¥

4.4 The Mythical Standard Condition

REXX Language Level 4.00 has six different conditions, REXX Language Level 5.00 has
seven. However, each of these is a special case of a mythical, non-existinggdstandaion. In
order to better understand the real conditions, we start by explaining how a standardrcosmaki

In the examples below, we will call our non-existing standard condiéhH Note that these
examples will not be executable on &gXX implementation.

4.4.1Information Regarding Conditions (data structu res)
There are mainly five conceptual data structures involved in conditions.

[Event queue.]
There is one interpreter-wide queue of pending conditions. Raising a condition is identical
adding information about the condition to this queue (FIFO). The order of the queue is the
same order in which the conditions are to be handled.

Every entry in the queue of pending conditions contains some information about the event:
the line number of thREXX script when the condition was raised, a descriptive text and the
condition type.
[Default-Action.]
To each, there exists information about the default-action to take if this conditaseid r
but the trap is in sta®FF. This is called the "default-action”. The standard default-action
is to ignore the condition, while some conditions may abort the execution.
[Delay-Action.]
Each condition will also have delay-action, which tells what to do if the condition éslrais

125

when condition trap is in staBELAY. The standard delay-action is to queue the condition
in the queue of pending conditions, while some conditions may ignore it.

[Condition traps.]
For each condition there is a trap which contains three pieces of status inforrhatistate;
the handler; and the method. The state caDN©FFor DELAY.

The handler names tiREXX label in the start of thREXX code to handle the event. The
method can be eith& GNAL or CALL, and denotes the method in which the condition is to
be handled. If the state @FF, then neither handler nor method is defined.

[Current Trapped Condition.]
This is the most recently handled condition, and is set whenever a trap is triggered. It
contains information about method, which condition, and a context-dependent description.
In fact, the information in the current trapped condition is the same information that was
originally put into the pending event queue.

Note that the event queue is a data structure connected to the interpreter itself.retaucopthe

same event queue, independent of subroutines, even external ones. On the other hand, the condition
traps and the current trapped condition are data structures connected to each singlavbet a

new routine is called, it will get its own condition traps and a current trapped conditiantefoal

routines, the initial values will be the same values as those of the caller. émiaexbutines, the

values are the defaults.

The initial value for the event queue is to be empty. The default-action and the dielayaect
static information, and will always retain their values during execution. T vaiues for the
condition traps are that they are all in statek The initial value for the current trapped condition
is that all information is set to the nullstring to signalize that no condition isrtlyrbeing trapped.

4.4.2How to Set up a Condition Trap

How do you set the information in a condition trap? You do it wilBh@NAL or CALL clause, with
the ONor OFF subkeyword. Remember that a condition trap contain three pieces of information?
Here are the rules for how to set them:

* To set the trap method, use eitB#GNAL or CALL as keyword.

* To set state tONor OFF, use the appropriate subkeyword in the clause. Note that there is no
clause or function IREXX, capable of setting the state of a trapELAY.

* To set the condition handler, append the telAME handl| er " to the command. Note that
this term is only legal if you are setting the stat®Myou can not specify a handler when
setting the state tOFF.

The trap is said to be "enabled" when the state is €itNer DELAY, and "disabled” when the state
is OFF. Note that neither the event queue, nor the current trapped condition can be set explicitly by
REXX clauses. They can only be set as a result of incidents, when raising and trapping conditions

It sounds very theoretical, doesn't it? Look at the following examples, which setsothiyTH

126

/*1*/ SIGNAL ON MYTH NAME TRAP_IT
* 2 */ SIGNAL OFF MYTH

/*3* CALL ON MYTH NAME MYTH_TRAP
[*4* CALL ON MYTH

/*5* CALL OFF MYTH

Line 1 sets state tON method t&SIGNAL and handler td RAP_IT. Line 2 sets state OFF,
handler and method becomes undefined. Line 3 sets stat¢ meethod taCALL, and handler to
MYTH_TRAPLine 4 sets state ©©ON method taCALL and handler ttMYTH(the default). Line 5
sets state tOFF, handler and method become undefined.

Why should method and handler become undefined when the trap i@Bt&té-or two reasons:
firstly, these values are not used when the trap is in@tEeand secondly, when you set the trap
to stateON they are redefined. So it really does not matter what they are iiOtate

What happens to this information when you call a subroutine? All information about traps are
inherited by the subroutine, provided that it is an internal routine. External routines do nbt inher
any information about traps, but use the default values. Note that the inheritance is donélgy copy
so any changes done in the subroutine (internal or external), will only have effedteiniitine
returns.

4.4.3How to Raise a Condition

How do you raise a condition? Well, there are really no explicit WEXX to do that. The
conditions are raised when an incident occurs. What sort of situations that is, depends on the
context. There are in general three types of incidents, classified by the ottiggnesent:

« Internal origin. The incident is only dependent on the behavior &REXX script. The
SYNTAXcondition is of this type.

e External origin. Th&REXX script and the interpreter has really no control over when this
incident. It happens completely independent of the control dREXX script or interpreter.
TheHALT condition is of this type.

* Mixed origin. The incident is of external origin, but the situation that created tdembcwas
an action by th&EXX script or the interpreter. THERRORondition is of this type: the
incident is a command returning error, but it can only occur when the interpreterusirexec
commands.

For conditions trapped by meth@d\LL, standardREXX requires an implementation to at least
check for incidents and raise condition at clause boundaries. (But it is allowed to dovwerdse
too; although the actual triggering must only be performed at clause boundaries.) Qahgeque
you must be prepared that in some implementations, conditions trappable by @wthoaight
only be raised (and the trap triggered) at clause boundaries, even if they aréyduapgred by
methodSIGNAL.

The seven standard conditions will be raised as result of various situations, reatidhe se
describing each one of them for more information.

127

[Incident] |Condition| /Trap \ Off |Default |
| occurs | -> |is raised | -> \ State / --> | action |
\-----/

S R I SR + N\ S — +
/
/On |Delay
/ |
/ v
+omeoeo- +/ f---mmm--- \
E— +
| Queue | Yes /DelayAction\ No |
Ignore|
|an event| <-- \is queue? / -->|
event|
+omemee- + \-m-ooe- /
S A— +
|
%
[-=----- \
/Method is\
\ CALL? /
\-mmmm- /\
/ \
/No Yes\
/
\ [---m=m-- \
/ \ /
\
+ommme- + Fommmme- + \ Decision
/
| Set state | | Set state |
| OFF | | DELAY |
T + R — +
A —— +
| | Trigger | | | I
| trap | | Return | | Action
| A — + I — +
S +

Thetriggering of a condition

When an incident occurs and the condition is raised, the interpreter will check thod ttate
condition trap for that particular condition at the current procedure level.

« If the trap state iI©FF, the default-action of the condition is taken immediately. The "standard"
default-action is to ignore the condition.

» If the trap state iIDELAY, the action will depend on the delay-action of that condition. The
standard delay-action is to ignore, then nothing further is done. If the delay-action is¢p que

128

the interpreter continues as if the state @&k

e If the state of the trap BN an event is generated which describes the incident, and it is queued
in the pending event queue. The further action will depend on the method of trapping.

» If the method iCALL, the state of the trap will be set@&LAY. Then the normal execution is
resumed. The idea is that the interpreter will check the event queue latea(stealmundary),
and trigger the appropriate trap, if it finds any events in the event queue.

» Else, if method of trapping SIGNAL, then the action taken is this: First set the trap to state
OFF, then terminate clause the interpreter was executing at this procedure heveit T
explicitly trigger the condition trap.

This process has be shown in the figure above. It shows how an incident makes the intaigeeter r
a condition, and that the state of the condition trap determines what to do next. The possible
outcomes of this process are: to take the default-action; to ignore if delay-aatiot to queue; to

just queue and the continue execution; or to queue and trigger the trap.

4.4.4How to Trigger a Condition Trap

What are the situations where a condition trap might be triggered? It depends orhtite met
currently set in the condition trap.

If the method iSIGNAL, then the interpreter will explicitly trigger the relevant trap when it has
raised the condition after having sensed the incident. Note that only the partiquiargustion
will be triggered in this case; other traps will not be triggered, even if thengeedent queue is
non-empty.

In addition, the interpreter will at each clause boundary check for any pending events/anthe e
queue. If the queue is non-empty, the interpreter will not immediately execute thmomaal
statement, but it will handle the condition(s) first. This procedure is repeatethentilare no more
events queued. Only then will the interpreter advance to execute the next normradrdtate

Note that thdREXX standard does not require the pending events to be handled in any particular
order, although the model shown in this documentation it will be in the order in which the
conditions were raised. Consequently, if one clause generates several eveaitsetibanditions
before or at the next clause boundary, and these conditions are trapped by@adthotihen, the
order on which the various traps are triggered is implementations-dependent. Butitie orde
which the different instances of the same condition is handled, is the same as thetbeder of
condition indicator queue.

4.4.5Trapping by Method SIGNAL

Assume that a condition is being trapped by meBIGNAL, that the state ®Nand the handler is
MYTH_TRAPThe followingREXX clause will setup the trap correctly:

SIGNAL ON MYTH NAME MYTH_TRAP
Now, suppose thelYTHncident occurs. The interpreter will sense it, queue an event, set the trap

state toOFFand then explicitly trigger the trap, since the methddl@GNAL. What happens when
the trap is triggered?

129

e It collects the first event from the queue of pending events. The information is remmwetthér
queue.

* The current trapped condition is set to the information removed from the pending event queue.

* Then, the interpreter simulateSEGNAL clause to the label named by trap handler of the trap
for the condition in question.

* As all SIGNAL clauses, this will have the side-effects of setting3i&L special variable, and
terminating all active loops at the current procedure level.

That's it for metho@&IGNAL. If you want to continue trapping condititiY TH you have to

execute a neBIGNAL ON MYTH clause to set the state of the tra®té But no matter how

quick you reset the trap, you will always have a short period where it is ifO$t&t& his means

that you can not in general use the met8ENAL if you really want to be sure that you don't loose
anyMYTHevents, unless you have some control over viliéimHcondition may arise.

Also note that since the statement being executed is terminated; all aspgeoh the current
procedure level are terminated; and the only indication where the error occurrelinis thember
(the line may contain several clauses), then it is in general impossible to picknartze
execution after a condition trapped B\GNAL. Therefore, this method is best suited for a
"graceful death” type of traps. If the trap is triggered, you want to termirmateyeu were doing,
and pick up the execution at an earlier stage, e.g. the previous procedure level.

4.4.6Trapping by Method CALL

Assume that the conditidY THs being trapped by meth&ALL, that the state ©®Nand the
handler isMYTH_HANDLER

The followingREXX clause will setup the trap correctly:

CALL ON MYTH NAME MYTH_HANDLER

Now, suppose that thdYTHncident occurs. When the interpreter senses that, it will raise the
MY THcondition. Since the trap stateO®Nand the trap method GALL, it will create an event and
queue it in the pending event queue and set the trap si2Ed #®Y. Then it continues the normal
execution. The trap is not triggered before the interpreter encounters the nsgthdandary. What
happens then?

* At the every clause boundaries, the interpreter check for any pending events in the event queue
If one is found, it is handled. This action is done repeatedly, until the event queue is empty.

* It will simulate a normal function call to the label named by the trap handler. AsmyCALL
clause, this will set the special variaBI&sL to the line of from which the call was made. This
is done prior to the call. Note that this is the current line at the time when the con@iion w
raised, not when it was triggered. All other actions normally performed whemgcalli
subroutine are done. Note that the arguments to the subroutine are set to empty.

« However, just before execution of the routine starts, it will remove the first ievrd pending
event queue, the information is instead put into the current trapped condition. Note that the

130

current trapped condition is information that is saved across subroutine callst éfisrsihe
condition handler is called, and will be local to the condition handler (and functions called by
the condition handler). To the "caller” (i.e. the procedure level active when the trap was
triggered), it will seem as if the current trapped condition was never changed.

* Then the condition handler finishes execution, and returns by executiRgTéRNclause.
Any expression given as argumenRBTURNuill be ignored, i.e. the special varialRESULT
will not be set upon return from a condition handler.

« At the return from the condition handler, the current trapped condition and the setup of all traps
are restored, as with a normal return from subroutine. As a special case, tbetbtateap just
triggered, will not be put back infOELAYstate, but is set to staBiN

» Afterward (and before the next normal clause), the interpreter will agaik fdremore events
in the event queue, and it will not continue onREeXX script before the queue is empty.

During the triggering of a trap by meth@ALL at a clause boundary, the state of the trap is not
normally changed, it will continue to IBELAY, as was set when the condition was raised. It will
continue to be in stal@ELAYuntil return from the condition handler, at which the state of the trap
in the caller will be changed ©N If, during the execution of the condition trap, the state of the
condition being trapped is set, that change will only last until the return from the coriditidler.

Since new conditions are generally delayed when an condition handler is executing, néansondi
are queued up for execution. If the trap state is chang@dl| tine pending event queue will be
processed as named at the next clause boundary. If the state is ch&igEdiie default action of
the conditions will be taken at the next clause boundary.

4.4.7The Current Trapped Condition

The interpreter maintains a data structure called the current trapped conddooriaihs
information relating the most recent condition trapped on this or higher procedure levelriEms
trapped condition is normally inherited by subroutines and functions, and restored aftefroatur
these.

* When trapped by methd®GNAL the current trapped condition of the current procedure level
is set to information describing the condition trapped.

* When trapped by methd@ALL, the current trapped condition at the procedure level which the
trap occurred at, is not changed. Instead, the current trapped condition in the condition handler
is set to information describing the condition.

The information stored in the current trapped condition can be retrieved by the built-inrfuncti
CONDITION() . The syntax format of this function is:

CONDITION(opt i on)

whereoptionis an option string of which only the first character matters. The valid options are:
Condition name , Description , Instruction andState . These will return: the name of
the current trapped condition; the descriptive text; the method; and the current gtateasfdition,
respectively. The defaubiptionis Instruction . See the documentation on the built-in
functions. See also the description of each condition below.

131

Note that theState option do not return the state at the time when the condition was raised or the
trap was triggered. It returns the current state of the trap, and may change xkecirtgpa. The

other information in the current trapped condition may only change when a new condition is trapped
at return from subroutines.

4.5 The Real Conditions

We have now described how the standard condition and condition trap w&EXM Let's look
at the seven conditions defined which do exist. Note that none of these behaves exactly as the
standard condition.

4.5.1The SYNTAXcondition

The SYNTAXcondition is of internal origin, and is raised when any syntax or runtime error is
discovered by thREXX interpreter. It might be any of the situations that would normally lead to
the abortion of the program and the report BESXX error message, except error message number
4 (Program interruptedl which is handled by thdALT condition.

There are several differences between this condition and the standard condition:

e ltis not possible to trap this condition with the metid#l_L, only methodSIGNAL. The
reason for this is partly that meth@a@\LL tries to continue execution until next boundary before
triggering the trap. That might not be possible with syntax or runtime errors.

* When this condition is trapped, the special vari&ilas set to thdREXX error number of the
syntax or runtime error that caused the condition. This is done just before the settag of t
special variabl&IGL.

* The default action of this condition if the trap stat®FF, is to abort the program with a
traceback and error message.

* There is not delay-action for conditi®@YNTAX since it can not be trapped by metl@AalLL,
and consequently never can get into SRECAY.

The descriptive text returned BONDITION() when called with th®escription option for
conditionSYNTAX is implementation dependent, and may also be a nullstring. Consult the
implementation-specific documentation for more information.

4.5.2The HALT condition

TheHALT condition of external origin, which is raised as a result of an action from the user,
normally a combination of keys which tries to abort the program. Which combination of Keys wi
vary between operating systems. Some systems might also simulate thisyesthier means than
key combinations. Consult system for more information.

The differences betwedhALT and the standard condition are:
* The default-action for thelALT condition is to abort execution, as thougREXX runtime

error number 4Krogram interrupteylhad been reported. But note tBNTAXwill never be
raised ifHALT is not trapped.

132

* The delay-action of this condition is to ignore, not queue.

The standard allows the interpreter to limit the search for situations that vebtiheldALT

condition, to clause boundaries. As a result, the response time from pressing the keytmntbina
actually raising the condition or triggering the trap may vary, evidAIfT is trapped by method
SIGNAL. If a clause for some reason has blocked execution, and never finish, you may not be able
to break the program.

The descriptive text returned BONDITION() when called with th®escription option for
conditionHALT, is implementation dependent, and may also be a nullstring. In general, it will
describe the way in which the interpreter was attempted halted, in partidhlereifare more than
one way to do raiseALT condition. Consult the implementation documentation for more
information.

4.5.3The ERRORoNdition

TheERRORs a condition of mixed origin, it is raised when a command returns a return value
which indicates error during execution. Often, commands return a numeric value, ancugaparti
value is considered to mean success. Then, other values might ré&seR@& ondition.

Differences betweeBRRORNd the standard condition:
e The delay action dERRORs to ignore, not to queue.

* The special variablRCis always set before this condition is raised. So even if it is trapped by
methodSIGNAL, you can rely ofiRCto be set to the return value of the command.

Unfortunately, there is no universal standard on return values. As stated, they are oéea, fowrn
some operating system use non-numeric return values. For those which do use numeribewdues, t
are no standard telling which values and ranges are considered errors and which@gesdonsi
success. In fact, the interpretation of the value might differ between commahutstiagt same
operating system.

Therefore, it is up to thREXX implementation to define which values and ranges that are
considered errors. You must expect that this information can differ between impdéores as
well as between different environments within one implementation.

The descriptive text returned BONDITION() when called with th®escription option for
conditionERRORIs the command which caused the error. Note that this is the command as the
environment saw it, not as it was entered inREXX script source code.

4.5.4The FAILURE condition

TheFAILURE is a condition of mixed origin, it is raised when a command returns a return value
which indicates failure during execution, abnormal termination, or when it was itleassi

execute a command. Itis a subset ofER&RORondition, and if it is in stat®FF, then theERROR
condition will be raised instead. But note that an implementation is free to conkrééural codes
from commands aSRROR, and none aAILURES. In that case, the only situation where a
FAILURE would occur, is when it is impossible to execute a command.

133

Differences betweeBAILURE and the standard condition:
e The delay action dfAILURE is to ignore, not to queue.

* The special variablRCis always set before this condition is raised. So even if it is trapped by
methodSIGNAL, you can rely ofiRCto be set to the return value of the command, or the return
code that signalize that the command was impossible to execute.

As for ERRORthere is no standard the defines which return values are failures and which are errors
Consult the system and implementation independent documentation for more information.

The descriptive text returned BONDITION() when called with th®escription option for
conditionFAILURE, is the command which caused the error. Note that this is the command as the
environment saw it, not as it was entered inREXX script source code.

4.5.5The NOVALUEondition

TheNOVALUEondition is of internal origin. It is raised in some circumstances if the value of an
unset symbol (which is not a constant symbol) is requested. Normally, this would retdefatiiée
value of the symbol. It is considered bad programming practice not to initializbleariand

setting theNOVALUEondition is one method of finding the parts of your program that uses this
programming practice.

Note however, there are only three instances where this condition may be raisedvkigat the
value of an unset (non-constant) symbol is used requested: in an expression; W&t the
subkeyword in @ ARSEclause; and as an indirect reference in either a templaeOd&or a
PROCEDURE&ause. In particular, this condition is not raised ifWde.UE() or SYMBOL() built-
in functions refer to an unset symbol.

Differences betweeNOVALUENd the standard condition are:

* It may only be trapped by meth&GNAL, never metho€ALL. This requirement might seem
somewhat strange, but the idea is that since an implementation is only forced tacheck f
conditions trapped by meth@ALL at clause boundaries, incidences that may occur at any
point within clauses (likNOVALUIEcan only be trapped by meth8GNAL. (However,
conditionNOTREADYan occur within a clause, and may be trapped by mé&hahd so this
does not seem to be absolute consistent.)

» There is not delay-action for conditidOVALUEsince it can not be trapped by meti@AlLL,
and consequently never can get into STHE&AY.

The descriptive text returned by calli@@NDITION() with theDescription option, is the
derived (i.e. tail has be substituted if possible) name of the variable that causaaldikiercto be
raised.

4.5.6The NOTREADYondition

The conditiolNOTREADYs a condition of mixed origin. It is raised as a result of problems with
stream 1/O. Exactly what causes it, may vary between implementations, libstme more
probable causes are: waiting for more 1/O on transient streams; accesangsstot allowed; /0
operation would block if attempted; etc. See the chafteeam | nput and Output for more

134

information.
Differences betweeNOTREADYNd the standard condition are:
« It will be ignored rather than queued if condition trap is in SMEEAY.

* This condition differs from the rest in that it can be raised during execution of a,dlatsan
still be trapped by methadALL.

The descriptive text returned BONDITION() when called with th®escription option for
conditionNOTREAD)is the name of the stream which caused the problem. This is probably the
same string that you used as the first parameter to the functions that operatesno&t For the
default streams (default input and output stream), the string returf@@NRITION() will be
nullstrings.

Note that if theNOTREADYrap is in stat®ELAY, then all I/O for files which has tried to raise
NOTREADWithin the current clause will be simulated as if operation had succeeded.

4.5.7The LOSTDIGITS condition

The conditiolLOSTDIGITS was introduced in Language Level 5.00. It is raised as a result of any
arithmetic operation which results in the loss of any digits. i.e. If the number dfcgighdigits in

the result of an arithmetic operation would exceed the currently defined numbettigi
NUMERIC DIGITS, then th& OSTDIGITS condition is raised.

Differences betweebhOSTDIGITS and the standard condition are:
e It may only be trapped by meth&IGNAL, never methoCALL.

* There is not delay-action for conditibdlfOVALUEsince it can not be trapped by metialLL,
and consequently never can get into SRR AY.

The descriptive text returned BONDITION() when called with th®escription option for
conditionNOTREAD)is the name of the stream which caused the problem. This is probably the
same string that you used as the first parameter to the functions that operatesno&t For the
default streams (default input and output stream), the string returf@@MRITION() will be
nullstrings.

4.6 Further Notes on Conditions

4.6.1Conditions under Language Level 3.50

The concept of conditions was very much expanded R&XX language level 3.50 to level 4.00.
Many of the central features in conditions are new in level 4.00, these include:

* TheCALL method is new, previously only tE#GNAL method was available, which made it
rather difficult to resume execution after a problem. As a part of thi®EhAY state has been
added too.

* The conditiolNOTREADYias been added, to allow better control over problems involving

135

stream |/O.

* The built-in functionCONDITION() has been added, to allow extraction of information about
the current trapped condition.

4.6.2Pitfalls when Using Condition Traps
There are several pitfalls when using conditions:

* Remember that some information are saved across the functions. Both the curredt trappe
condition and the settings of the traps. Consequently, you can not set a trap in a procedure level
from a lower level. (i.e. calling a subroutine to set a trap is will not work.)

* Remember thabIGL is set when trapped by methGALL. This means that whenever a
condition might be trapped YALL, theSIGL will be set to a new value. Consequently, never
trust the contents of tHIGL variable for more than one clause at a time. This is very
frustrating, but at least it will not happen often. When it do happen, though, you will probably
have a hard time debugging it.

« Also remember that if you use tRROCEDUREause in a condition handler called by method
CALL, remember t&EXPOSEhe special variableSIGL if you want to use it inside the
condition handler. Else it will be shadowed by BROCEDURE

4.6.3The Correctness of this Description

In this description of conditions REXX, | have gone further in the description of how conditions

work, their internal data structures, the order in which things are executed etdietstantiard

does. | have tried to interpret the set of distinct statements that is the dociomemtaiondition,

and design a complete and consistent system describing how such conditions work. | have done this
to try to clarify an area dREXX which at first glance is very difficult and sometimes non-intuitive.

| hope that the liberties | have taken have helped describe conditiBESXX. | do not feel that the
adding of details that | have done in any way change how conditions work, but at least | owe the
reader to list which concepts that are geniEXX, and which have been filled in by me to make
the picture more complete. These are not a part of the staREXIX.

« REXX does not have anything called a standard condition. There just "are" a set of conditions
having different attributes and values. Sometimes there are default values tof $oene
attributes, but still the are no default condition.

* The terms "event" and "incident" are not used. Instead the term "condition" is somewhat
overloaded to mean several things, depending on the situation. | have found it advantageous to
use different terms for each of these concepts.

» StandardREXX does not have condition queue, although a structure of such a kind is needed to
handled the queuing of pending conditions when the trap s2aELAY.

e The values default-action and delay-action are really non-existing in the St&&haX
documentation. | made them up to make the system more easy to explain.

* The two-step process of first raising the flag, and then (possibly at a lgey tsiggering the

136

trap, is not really &EXX concept. OriginallyREXX seems to allow implementations to select
certain places of the interpreter where events are sought for. All standardocenttiiéit can be
called by methodALL, can be implemented by checking only at clause boundaries.

« Consequently, REXX implementation can choose to trigger the trap immediately after a
condition are raised (since conditions are only raised immediately beforeptheotrldl trigger
anyway). This is also the common way used in language level 3.50, when only BEHNAL
was implemented.

e Unfortunately, the introduction of the st@&LAYforces the interpreter to keep a queue of
pending conditions, so there is nothing to gain on insisting that raising should happen
immediately before triggering. And the picture is even more muddied wh&NCQRREADY
condition is introduced. Since it explicitly allows raising of condition to be done during the
clause, even though the triggering of the trap must happen (if metGadLi3 at the end of the
clause.

| really hope that these changes has made the concept of conditions easier to understaddr.not ha
Please feel free to flame me for any of these which you don't think is represefaa®EXX.

4.7 Conditions in Regina

Here comes documentation that are specific foRiagina implementation oREXX.

4.7.1How to Raise the HALT condition

The implementation connect tRALT condition to an external event, which might be the pressing
of certain key combination. The common conventions of the operating system will dilctdtthat
combination of keystrokes is.

Below is a list, which describes how to invoke an event that will raigdAhd condition under
various the operating systems whiRagina runs under.

e Under various variants of thénix operating system, tHe¢ALT event it connected to the signal
“interrupt” SIGINT). Often this signal is bound to special keystrokes. Depending on your
version of Unix, this might be <ctrl>-<c> (mostly BSD-variants) or the <dey>(kestly
System V). ltis also possible to send this signal from the command line, in geimegdhas
programkill(1) ; or from program, in general using the cagjnal(3) . Refer to your
Unix documentation for more information.

* UnderVAX/VMS, the key sequence <ctrl>-<c> is used to raiséHRET condition in the
interpreter.

4.8 Possible Future extensions

* Here is a list of possible future extension®REXX which has not been implemented into
Regina. Some of these exist in other implementationREKX, and some of them are just
suggestions or ideas thrown around by various people.

* Another extension could have been included, but have been left out so far. It is the delay-action,

which in standardREXX can be either to ignore or to queue. There is at least one other action
that make sense: to replace. That is, when a trap is irDdEhi&Y, and a new condition has

137

been raised, the pending queue is emptied, before the new condition is queued. That way, the
new condition will effectively replace any conditions already in the queue.

If there are several new conditions raised while the condition handler is exeanthiipé trap
state iDELAY), only the very last of them is remembered.

It should be possible to set the state for a trdpEbAY, so that any new instances of the

condition is handles by the delay-action. As a special cas8YtiN& AXcondition trap might not
be set in statBELAY

138

139

5 Stream Input and Output

And the streams thereof shall be turned into pitch

Isaiah 33:21
For every one that asketh receivedth;
and he that seeketh findth;
and to him that knocketh it shall be opened.

Matthew 7:8

This chapter treats the topic of input from and output to streams using the built-in fun&tions
overview of the other parts of the input/output (I/O) system is also given but not discudséaili
At the end of the chapter there are sections containing implementation-spéarfication for this
topic.

5.1 Background and Historical Remarks

Stream /O is a problem area for languagesREXX. They try to maintain compatibility for all
platforms (i.e. to be non-system-specific), but the basic I/O capabilities défween systems, so
the simplest way to achieve compatibility is to include only a minimal, common silibet
functionality of all platforms. With respect to the functionality of the intertactheir surrounding
environment, non-system-specific script languagesRIEXX are inherently inferior to system
specific script languages which are hardwired to particular operatingnsyatel can benefit from
all their features.

AlthoughREXX formally has its own I/O constructs, it is common for some platforms that most or
all of the I/O is performed as operating system commands rather tR&XX. This is how it was
originally done under VM/CMS, which was one of the earliest implementations and wthicbtdi
supportREXX's I/O constructs. There, tEXECIO program and the stack (among other methods)
are used to transfer data to and froREEXX program.

Later, the built-in functions for stream I/O gained territory, but lots of imphiatiens still rely on
special purpose programs for doing I/0. The general recommendaB&Xd§ programmers is to
use the built-in functions instead of special purpose programs whenever possibleghthahig
way to make compatible programs.

5.2 REXX's Notion of a Stream

REXX regards a stream as a sequence of characters, conceptually equivalent to erhaightis
type at the keyboard. Note that a straamot generally equivalent to a filgMCGH:DICT] defines
a file as "a collection of related records treated as a unit,” while [O)XCTdefines it as
"Information held on backing store [...] in order (a) to enable it to persist beyond the time of
execution of a single job and/or (b) to overcome space limitations in main memorgeam s¢
defined by [OX:CDICT] as "a flow of data characterized by relative long durathd constant
rate."

Thus, a file has a flavor of persistency, while a stream has a flavor of sequence ardaritym
For a stream, data read earlier may already have been lost, and the data ndtnyay meat be
currently defined; for instance the input typed at a keyboard or the output of a program. Even though

140

much of theREXX literature use these two terms interchangeably (and after all, thereds som
overlap), you should bear in mind that there is a difference between them.

In this documentation, the term "file" means "a collection of persistent data@rdaeg storage, to
which random access and multiple retrieval are allowed.” The term "strea@ansra sequential

flow of data from a file or from a sequential device like a terminal, tape, or the ougppragram.
The term stream is also used in its stREEXXX meaning: a handle to/from which a flow of data can
be written/read.

5.3 Short Crash-Course

REXX 1/O is very simple, and this short crash course is probably all you need in a festtding
of this chapter. But note that that, we need to jump a bit ahead in this section.

To read a line from a stream, use thEEIN() built-in function, which returns the data read. To
write a stream, use thédNEOUT() built-in function, and supply the data to be written as the
second parameter. For both operations, give the name of the stream as the firsepc8ame
small examples:

contents = linein('myfile.txt")
call lineout 'yourfile.txt', 'Data to be written'

The first of these reads a line from the streayfile.txt , While the second writes a line to the
streamyourfile.txt . Both these calls operate on lines and they use a system specific end-of-
line marker as a delimiter between lines. The marker is tagged on at the end dbamgttsn out,

and stripped off any data read.

Opening a stream IREXX is generally done automatically, so you can generally ignore that in your
programs. Another useful method is repositioning to a particular line:

call linein 'myfile.txt’, 12, 0
call lineout 'yourfile.txt',, 13

Where the first of these sets the current read position to the start of line 12 oédhe ¢he second
sets the current write position to the start of line 13. Note that the second pararaetpty, that
means no data is to be written. Also note that the current read and write positiorns are tw
independent entities; setting one does not affect the other.

The built-in function®CHARIN() andCHAROUT()are similar to the ones just described, except
that they are character-oriented, i.e. the end-of-line delimiter is notti@ate special character.

Examples of use are:

say charin('myfile.txt', 10)
call charout 'logfile’, 'some data’

Here, the first example reads 10 characters, starting at the current inponpuoagitle the second
writes the eleven characters of "some data” to the file, without an end-ofafikenafterward.

It is possible to reposition character-wise too, some examples are:

141

call charin 'myfile’,, 8
call charout 'foofile,, 10

These two clauses repositions the current read and write positions of the nantedHi#e® and
10" characters, respectively.

5.4 Naming Streams

Unlike most programming languag&EXX does not use file handles; the name of the stream is
also in general the handle (although some implementations add an extra level aiondliréou
must supply the name to all I/O functions operating on a stream. However, interndRf£XNXe
interpreter is likely to use the native file pointers of the operating systengdantorimprove speed.
The name specified can generally be the name of an operating system file, andeacer a
special stream name supported by your implementation.

The format of the stream name is very dependent upon your operating system. For gortabilit
concerns, you should try not to specify it as a literal string in each 1/O call, lauvaeable to the
stream name, and use that variable when calling 1/O functions. This reduces the nyptdmsssof

you need to make changes if you need to port the program to another system. Unfortunately, this
approach increases the needAR®&OCEDURE EXPOS$EiInce the variable containing the files

name must be available to all routines using file I/O for that particular fiteat their non-

common ancestors.

Example: Specifying file names

The following code illustrates a portability problem related to the naming ahs$teThe variable
filename is set to the name of the stream operated on in the function call.

filename = 'ftmp/MyFile. Txt'

say 'first line is' linein(filename)
say 'second line is' linein(filename)
say ' third line is' linein(filename)

Suppose this script, which looks like it is written for Unix, is moved to a VMS machine. Tieen, t
stream name might be something IKES$TEMP:MYFILE.TXT, but you only need to change the
script at one particular point: the assignment to the variddshame ; as opposed to three places
if the stream name is hard-coded in each of the three callsIEIN()

If the stream name is omitted from the built-in /O functions, a default steased: input
functions use the default input stream, while output functions use the default output stresen. T
are implicit references to the default input and output streams, but unfortunatelysther
standard way to explicitly refer to these two streams. And consequently, therstedard way to
refer to the default input or output stream in the built-in funcB@REAM().

However, most implementations allow you to access the default streamstigxplioLigh a name,
maybe the nullstring or something likelin - andstdout . However, you must refer to the
implementation-specific documentation for information about this.

Also note that standafEXX does not support the concept of a default error stream. On operating
systems supporting this, it can probably be accessed through a special naméesespafic

142

information. The same applies for other special streams.

Sometimes the term "default input stream” is called "standard input stremfatlt input devices,"
"standard input,” or just "stdin."”

The use of stream names instead of stream descriptors or handles is deeply rbefREXXt
philosophy: Data structures are text strings carrying information, rathreoffzeue data blocks in
internal, binary format. This opens for some intriguing possibilities. Under somdingeasstems,

a file can be referred to by many names. For instance, under Unix, a file can leel tefas

foobar , ./foobar and././foobar . All which name the same file, althougiREXX

interpreter may be likely to interpret them as three different streanasjdgethe names themselves
differ. On the other hand, nothing prevents an interpreter from discovering that theseesdana
the same stream, and treat them as equivalent (except concerns for procasgindniler Unix,

the problem is not just confined to the use/ ofin file names, hard-links and soft-links can produce
similar effects, too.

Example: Internal file handles

Suppose you start reading from a stream, which is connected to a filefealledou read the first
line of foo , then you issue a command, in order to ren@oeto bar . Then, you try to read the
next line fromfoo . TheREXX program for doing this under Unix looks something like:

signal on notready
linel = linein('foo")
'mv foo bar'

line2 = linein('foo")

Theoretically, the fildoo does not exist during the second call, so the second read should raise the
NOTREADYondition. However, REXX interpreter is likely to have opened the stream already,

so it is performing the reading on the file descriptor of the open file. It is probably ngttgoi

check whether the file exists before each I/O operation (that would require axtriaofleecking).

Under most operating systems, renaming a file will not invalidate exisknddscriptors.

Consequently, the interpreter is likely to continue to read from the origmafile, even though its

has changed.

Example: Unix temporary files

On some systems, you can delete a file, and still read from and write to thecirewuted to that
file. This technique is shown in the following Unix specific code:

tmpfile = 'tmp/myfile’

call lineout tmpfile, "

call lineout tmpfile,, 1

'rm' tmpfile

call lineout tmpfile, 'This is the first line'

Under Unix, this technique is often used to create temporary files; you are gedratiethe file
will be deleted on closing, no matter how your program terminates. Unix deletesvadihever
there are no more references to it. Whether the reference is from thetéla sydrom an open
descriptor in a user process is irrelevant. Afterth&eommand, the only reference to the file is

143

from theREXX interpreter. Whenever it terminates, the file is deleted--since thene anere
references to it.

Example: Files in different directories

Here is yet another example of how using the filename directly in the st@dmmttions may give
strange effects. Suppose you are using a system that has hierarchicaiebreantdryou have a
functionCHDIR() which sets a current directory; then consider the following code:

call chdir "../dir1'
call lineout 'foobar’, 'written to foobar while in dirl'
call chdir "../dir2'
call lineout 'foobar', 'written to foobar while in dir2'

Since the file is implicitly opened while you are in the directbry , the filefoobar refersto a
file located there. However, after changing the directodir®d , it may seem logical that the
second call t.INEOUT() operates on a file idir2 , but that may not be the case. Considering
that these clauses may come a great number of lines apaREKAthas no standard way of
closing files, and thaREXX only have one file table (i.e. open files are not local to subroutines);
this may open for a significant astonishment in complEXX scripts.

Whether an implementation treatg¢foo and./foo as different streams is system-dependent;
that applies to the effects of renaming or deleting the file while readingtorgytoo. See your
interpreter's system-specific documentation.

Most of the effects shown in the examples above are due to insufficient isolatioemétee

filename of the operating system and the file handle iREYX program. Whenever a file can be
explicitly opened and bound to a file handle, you should do that in order to decrease the possibilities
for strange side effects.

Interpreters that allow this method generally hav®BREN() function that takes the name of the
files to open as a parameter, and returns a string that uniquely identifies thateopthif the
current context; e.g. an index into a table of open files. Later, this index can be usatiohgte
filename.

Some implementations allow only this indirect naming scheme, while others lmayaahix
between direct and indirect naming. The latter is likely to create some problaogssome strings
are likely to be both valid direct and indirect file ids.

5.5 Persistent and Transient Streams

REXX knows two different types of streams: persistent and transient. They diffeptuadtein
the way they can be operated, which is dictated by the way they are stored. Butrtbere is

difference in the data you can read from or write to them (i.e. both can used for chardoter
wise data), and both are read and written using the same functions.

[Persistent streams]

(often referred to just as "files") are conceptually stored on permanentstothg
computer (e.g. a disk), as an array of characters. Random access to and repeatddfetr

144

any part of the stream are allowed for persistent streams. Typical exafrppisistent
streams are normal operating system files.
[Transient streams]
are typically not available for random access or repeated retrieval, eitia@isbat is not
stored permanently, but read as a sequence of data that is generated on the fly; @r becaus
they are available from a sequential storage (e.g. magnetic tape) where emogsmis
difficult or impossible. Typical examples of transient streams are ddikedseyboards,
printers, communication interfaces, pipelines, etc.

REXX does not allow any repositioning on transient streams; such operations are not cogyiceptuall
meaningful; a transient stream must be treated sequentially. It is posdiglatta persistent stream

as a transient stream, but not vice versa. Thus, some implementations may allow youato ope
persistent stream as transient. This may be useful for files to which you havemeargaccess,

I.e. writes can only be performed at the end of file. Whether you can open a stream cukaparti
mode, or change the mode of a stream already open depends on your implementation.

Example: Determining stream type

Unfortunately, there is no standard way to determine whether a given file isgrersistransient.
You may try to reposition for the file, and you can assume that the file is perdishent i
repositioning succeeded, like in the following code:

streamtype: procedure

signal on notready

call linein arg(1), 1, 0

return 'persistent’ [* unless file is empty
*/
notready:

return ‘'transient’

Although the idea in this code is correct, there are unfortunately a few probleryghEirs
NOTREADYondition can be raised by other things than trying to reposition a transient stream; e.g
by any repositioning of the current read position in an empty file, if you have writes andgsetc.
Second, your implementation may not hAlM@TREAD)Yor it may not use it for this situation.

The best method is to us&&REAM() function, if one is available. Unfortunately, that is not very
compatible, since no standard stream commands are defined.

5.6 Opening a Stream

In most programming languages, opening a file is the process of binding a file (givéleby a
name) to an internal handlREXX is a bit special, since conceptually, it does not use stream
handles, just stream names. Therefore, the stream name is itself alseamelstndle, and the
process of opening streams becomes apparently redundant. However, note that a number of
implementations allow explicit opening, and some even require it.

REXX may open streams "on demand" when they are used for the first time. However, this
behavior is not defined in TRL, which says the act of opening the stream is not aRfEaX>of
[TRLZ2]. This might be interpreted as open-on-demand or that some system-spegifearpmust
be executed to open a stream.

145

Although an open-on-demand feature is very practical, there are situations wheredytouopsn
streams in particular modes. Thus, most systems have facilities for #xplening a file. Some
REXX interpreters may require you to perform some implementation-specific opebafore
accessing streams, but most are likely to just open them the first timedheyeared to in an 1/0
operation.

There are two main approaches to explicit opening of streams. The first uses andandsbuilt-in
function normally calleddPEN(), which generally takes the name of the file to open as the first
parameter, and often the mode as the second parameter. The second approach is sinekar, but us
the standard built-in functicBTREAM() with aCommandoption.

Example: Not closing files

Since there are no open or close operatidREAX interpreter never knows when to close a stream,
unless explicitly told so. It can never predict when a particular stream is tocbraxdeso it has to
keep the current read and write positions in case the stream is to be used agaioreT hetef

should always close the streams when you are finished using them. Failure to do 8lotheill f
interpreter with data about unneeded streams, and more serious, it may fill thieldilef your

process or system. As a rule, &XX script that uses more than a couple of streams, should close
every stream after use, in order to minimize the number of simultaneously operssifeas, the
following code might eventually crash for SOREXX interpreters:

do i=1 to 300
call lineout 'file.'||i, 'this is file number' i
end

A REXX interpreter might try to defend itself against this sort of open-many-close-none
programming, using of various programming techniques; this may lead to other sffactge e
However, the main responsibility for avoiding this is with you,RIEXX script programmer.

Note that if a stream is already open for reading, and you start writing to it, yaementation

may have to reopen it in order to open for both reading and writing. There are mainly tegiestrat

for handling this. Either the old file is closed, and then reopened in the new mode, which may leave
you with read and write access to another file. Or a new file handle is opened for thedew m

which may leave you with read and write access to two different files.

These are real-world problems which are not treated by the ideal description.oh §Bad
implementation should detect these situations and KSEREADY

5.7 Closing a Stream

As already mentionedREXX does not have an explicit way of opening a stream. Nor does it have
an explicit way of closing a stream. There is one semi-standard method: If ybINEEDUTY() ,

but omit both the data to be written and the new current write position, then the implerneastati
defined to set the current write position to the end-of-file. Furthermore, it iseallowTRL to do
something "magic" in addition. It is not explicitly defined what this magic is, BRut Juggests that

it may be closing the stream, flushing the stream, or committing changes done pyawithes

stream.

146

In SAA, the definition is strengthened to state that the "magic" is closing, prohiaketthé
environment supports that operation.

A similar operating can be performed by callg AROUT()with neither data nor a new position.
However, in this case, both TRL and SAA leave it totally up to the implementation whether
the file is to be closed. One can wonder whether the changedNiBOUT() in SAA with respect
to TRL should also have been don€€tdAROUT() but that this was forgotten.

TRL2 does not indicate thetNEIN() or CHARIN() can be used to close a string. Thus, the
closest one gets to a standard way of closing input files is to cdlIREGOUT() ; although it is
conceptually suspect to call an output routine for an input file. The historical reastms for
omission are perhaps that flushing output files is vital , while the concept of flusiirejegant
for input files; flushing is an important part of closing a file, and that explains lekiyg is only
indicated for output files.

Thus, the statement:

call lineout 'myfile.txt'

might be used to close the stremyifile.txt in some implementations. However, it is not
guaranteed to close the stream, so you cannot depend on this for scripts of maximumntydstabili
it's better than nothing. However, note that if it closes the stream, then also ém @ad position
is affected. If it merely flushes the stream, then only the current writeguossitikely to be

affected.

5.8 Character-wise and Line-wise I/O

Basically, the built-irREXX library offers two strategies of reading and writing streams: line-wis
and character-wise. When reading line-wise, the underlying storage method ofdherstust
contain information which describes where each line starts and ends.

Some file systems store this information as one or more special chamatitgthers structure

the file in a number of records; each containing a single line. This introduces lg sliftie point;
even though a streafoo returns the same data when read INEIN() on two different

machines; the data read fréao may differ between the same two machines when the stream is
read byCHARIN() , and vice versa. This is so because the end-of-line markers can vary between
the two operating systems.

Example: Character-wise handling of EOL

Suppose a text file contains the following three lines (ASCII character agsumed):

first
second
third

and you first read it line-wise and then character-wise. Assume the followinguprog

147

file = 'DATAFILE'
foo="
do i=1 while chars(file)>0
foo = foo || c2x(charin(file))"
end
say foo

When the file is read line-wise, the output is identical on all machines, i.e. thdirleseghown
above. However, the character-wise reading will be dependent on your operating sybiestila
system, thus, the output might e.g. be any of:

66 69 72 7374 73 65 6F 63 6E 64 74 68 69 72 64 66 69 72 73
74 OA

66 69 72 73 74 OA
73 65 6F 63 6E 64 OA
74 68 69 72 64 OA

66 69 72 73 74 OD OA
73 65 6F 63 6E 64 OD OA
74 68 69 72 64 OD OA

If the machine uses records to store the lines, the first one may be the resuttlyares data in

the lines of the file is returned. Note that the boxes in the output are put around the datadyener
by the actual line contents. What is outside the boxes is generated by the end-ofdiciecha
sequences.

The second output line is typical for Unix machines. They use the newline ASClltehastne
separator, and that character is read immediately after each line. Tivelastypical for MS-
DOS, where the line separator character sequence is a carriage retunmdotip\@ newline (ASCII
'OD'x and'0OA'x).

For maximum portability, the line-wise built-in functioddNEIN() , LINEOUT() andLINES

()) should only be used for line-wise streams. And the character-wise built-in fun@iARIN
() , CHAROUT()andCHARS()) should only be used for character-wise data. You should in
general be very careful when mixing character- and line-wise data in astiregls; it does work,
but may easily lead to portability problems.

The difference between character- and line-wise streams are roughly equigahe difference
between binary and text streams, but the two concepts are not totally equivalent. iy fldjtlae
data read is the actual data stored in the file, while in a text file, the @rasequiences used for
denoting end-of-line and end-of-file markers may be translated to actions or otlaetetsaduring
reading.

The end-of-file marker may be differently implemented on different systemso@e systems, this
marker is only implicitly present at the end-of-file--which is calculatethfthe file size (e.g. Unix).
Other systems may put a character signifying end-of-file at the end (or etennmddle) of the file
(e.g. <Ctrl-z> for MS-DOS). These concepts vary between operating systéensraters should
handle each concept according to the customs of the operating system. Check the istp@ment
specific documentation for further information. In any case, if the interpretés tearticular
character as end-of-file, then it only gives special treatment to this tdrastadng line-wise
operations. During character-wise operations, no characters have special meaning

148

5.9 Reading and Writing

Four built-in functions provide line- and character-oriented stream reading angywepabilities:
CHARIN() , CHAROUT() LINEIN() , LINEOUT() .

[CHARINQ)]
is a built-in function that takes up to three parameters, which are all optional: ta@ham
the stream to read from, the start point, and the number of characters to read. he strea
name defaults to the default input stream, the start point defaults to the cumigmisitian,
the number of characters to read defaults to one character. Leave out the secondrparamet
order to avoid all repositioning. During execution, data is read from the streamesecif
and returned as the return value.

[LINEIN()]
is a built-in function that takes three parameters too, and they are equivalent to the
parameters dEHARIN() . However, if the second parameter is specified, it refer to a line
position, rather than a character position; it refers to the character positiorficdtthe
character of that line. Further, the third parameter can orlydnéd, and refers to the
number of lines to read,; i.e. you cannot read more than one line in each call. The line read is
returned by the function, or the nullstring if no reading was requested.

[LINEOUT()]
is a built-in function that takes three parameters too, the first is the name é#me ©
write to, and defaults to the default output stream. The second parameter is the data to be
written to the file, and if not specified, no writing occurs. The third parametemis-a |
oriented position in the file; if the third parameter is specified, the currentopasit
repositioned at before the data (if any) is written. If data is written, an emtkafHaracter
sequence is appended to the output stream.

[CHAROUT()]
is a built-in function that is used to write characters to a file. It is identicadNEOUT() ,
except that the third parameter refers to a character position, instead gfasiitan. The
second difference is that an end-of-line character sequence is not appended at the end of the
data written.

Example: Counting lines, words, and characters

The followingREXX program emulates the core functionality of weeprogram under Unix. It
counts the number of lines, words, and characters in a file given as the first argument.

file = arg(1)
parse value 0 0 O with lines words chars
do while lines(file)>0
line = linein(file)
lines =lines + 1
words = words + words(line)
chars = chars + length(line)
end
say 'lines='"lines 'words='words 'chars='chars

There are some problems. For instance, the end-of-line characters are not counteastand a |
improperly terminated line is not counted either.

149

5.10Determining the Current Position

StandardREXX does not have any seek call that returns the current position in a stream. Instead, it
provides two calls that returns the amount of data remaining on a stream. These timo built
functions ard.lINES() andCHARS().

e TheLINES() built-in function returns the number of complete lines left on the stream given as
its first parameter. The term "complete lines" does not really mattdr, since an
implementation can assume the end-of-file to implicitly mean an end-of-line.

* TheCHARS() built-in function returns the number of character left in the stream given as its
first parameter.

This is one of the concepts wh&EXX I/O does not map very well to C I/O and vice versa. While
REXX reports the amount of data from the current read position to the end of stream, C reports the
amount of data from the start of the file to the current position. FurthdRBKX method only

works for input streams, while the C method works for both input and output files. On the other
hand, C has no basic constructs for counting remaining or reposition at lines of a file.

Example: Retrieving current position

So, how does one find the current position in a file, when only allowed to do normal repositioning?
The trick is to reposition twice, as shown in the code below.

ftell: procedure
parse arg filename
now = chars(filename)
call charin filename, O, 1
total = chars(filename)
call charin filename, 0, total-now
return total-now

Unfortunately, there are many potential problems with this code. First, it only veorikgt files,
since there is no equivalent@ARS() for output files. Second, if the file is empty, none of the
repositioning work, since it is illegal to reposition at or after end-of-filerfput files--and the end-
of-file is the first position of the file. Third, if the current read position of tleeidilat the end of file
(e.g. all characters have been read) it will not work for similar reasons &g fee¢dond case. And
fourth, it only works for persistent files, since transient files do not allow repusi.

Example: Improved ftell function

An improved version of the code for tfiell routine (given above), which tries to handle these
problems is:

150

ftell: procedure
parse arg filename
signal on notready name not_persist
now = chars(filename)
signal on notready name is_empty
call charin filename, O, 1
total = chars()
if now>0 then
call charin filename, 0, total-now+1
else if total>0 then
call charin filename, 1, total
else
nop /* empty file, should have raised
NOTREADY */
return total-now+1

not_presist: say filename 'is not persistent'; return O
is_empty: say filename 'is empty’; return O

The same method can be used for line-oriented 1/O too, in order to return the current lineafumber
an input file. However, a potential problem in that case is that the routine leavesdhe st
repositioned at the start of the current line, even if it was initially positionde tmiddle of a line.

In addition, the line-oriented version of tfiisl| routine may prove to be fairly inefficient, since
the interpreter may have to scan the whole file twice for end-of-line chasacieences.

5.11Positioning Within a File

REXX supports two strategies for reading and writing streams: characterawiskne-wise, this
section describes how a program can reposition the current positions for each abegestiNote
that positioning is only allowed for persistent streams.

For each open file, there is a current read posdram current write positigrdepending on whether

the file is opened for reading or writing. If the file is opened for reading and writmgtaneously,

it has both a current read position and a current write position, and the two are independent and in
general different. A position within a file is the sequence number of the byte or livéltlze read

or written in the next such operation.

Note thatREXX starts numbering at one, not zero. Therefore, the first character and the fioét line
a stream are both numbered one. This differs from several other programming langhace
starts numbering at zero.

Just after a stream has been opened, the initial values of the current read pobkgidirsis t
character in the stream, while the current write position is the end-of-filhe.position just after
the last character in the stream. Then, reading will return the first araf@actine) in the stream,
and writing will append a new character (or line) to the stream.

These initial values for the current read and write positions are the default vaksnding on

your REXX implementation, other mechanisms for explicitly opening streams (e.g. through the
STREAM() built-in function) may be provided, and may set other initial values for these positions.
See the implementation-specific documentation for further information.

151

When setting the current read position, it must be set to the position of an existirgecharte
stream; i.e. a positive value, not greater than the total number of charactergreatine i
particular, it is illegal to set the current read position to the position imrefdéadter the last
character in the stream; although this is legal in many other programmingdasgual operating
systems, where it is known as "seeking to the end-of-file".

When setting the current write position, it too must be set to the position of an existiagter in
the stream. In addition, and unlike the current read position, the current write positiolsorias a
set to the position immediately following the last character in the streamisTkinown as
"positioning at the end-of-file", and it is the initial value for the current writéiposvhen a stream
is opened. Note that you are not allowed to reposition the current write position furtherang bey
the end-of-file--which would create a "hole" in the stream--even though thisuwgedllin many

other languages and operating systems.

Depending on your operating system &tXX interpreter, repositioning to after the end-of-file
may be allowed as an extension, although it is illegal according to TRL2. You should avoid this
technique if you wish to write portable programs.

REXX only keeps one current read position and one current write position for each stream. So both
line-wise and character-wise reading as well as positioning of the cummdrppasition will operate
on the same current read position, and similarly for the current write position.

When repositioning line-wise, the current write position is set to the firstatbard the line
positioned at. However, if positioning character-wise so that the current readrpssiti the
middle of a line in the file, a subsequent calLINEIN() will read from (and including) the
current position until the next end-of-line marker. THUBIEIN() might under some
circumstances return only the last part of a line. Similarly, if the curreta position has been
positioned in the middle of an existing line by character-wise positionind,IAIEDUT() is
called, then the line written out becomes the last part of the line stored in the strea

Note that if you want to reposition the current write position using a line count, tha st@ahave

to be open for read, too. This is because the interpreter may have to read the content®affithe st
in order to find where the lines start and end. Depending on your operating system, thisrmay eve
apply if you reposition using character count.

Example: Repositioning in empty files

Since the current read position must be at an existing character in the streampdtssible to
reposition in or read from an empty stream. Consider the following code:

filename = '/tmp/testing’
call lineout filename,, 1 /* assuming truncation */
call linein filename, 1, O

One might believe that this would set the current read and write positions to tloé gtarstream.
However, assume that thdNEOUT() call truncates the file, so that it is zero bytes long. Then,
the last call can never be legal, since there is no byte in the file at which isiisipds position the
current read position. ThereforeN® TREADYXondition is probably raised.

152

Example: Relative repositioning

It is rather difficult to reposition a current read or write position relativedatirrent position. The
only way to do this within the definition of the standard is to keep a counter which tells you the
current position. That is, if you want to move the current read position five lines backveards, y
must do it like this:

filename = '/tmp/data’
linenum =0 ;
say linein(filename,10); linenum = 10
do while random(100)>3
say linein(filename); linenum = linenum+1
end
call linein(filename,linenum-5,0); linenum = linenum-5

Here, the variablenenum is updated for each time the current read position is altered. This may
not seem to difficult, and it is not in most cases. However, it is nearly impossiblehis dothe
general case, since you must keep an account of both line numbers and character nunmgers. Sett
one may invalidate the other: consider the situation where you want to reposition thereaite
position to the 10character before the 100ne in the stream. Except from mixing line-wise and
character-wise 1/O (which can have strange effects), this is nearlysibj@odVhen repositioning
character-wise, the line number count is invalidated, and vice versa.

The "only" proper way of handling this is to allow one or more (non-stan8aEAM() built-in
function operations that returns the current character and line count of the streamterpineter.

Example: Destroying linecount

This example shows how overwriting text to the middle of a file can destroy theline i the
following code, we assume that the filmbar exists, and contains ten lines which dnest'
line ", secondline , etc. up totenth line ". Then consider the following code:

filename = 'foobar’

say linein(filename, 5) /* says 'fifth line' */

say linein(filename) /* says 'sixth line' */

say linein(filename) /* says 'seventh line' */

call lineout filename, 'This is a very long line', 5

say linein(filename, 5) /* says 'This is a very long line'
*/

say linein(filename) /* says 'venth line' */

say linein(filename) /* says 'eight line' */

As you can see from the output of this example, the calN&OUT() inserts a long line and

overwrites the fifth and sixth lines completely, and the seventh line partifiéyward, the sixth
line is the remaining part of the old seventh line, and the new seventh line is the old eggtdtcli

5.12Errors: Discovery, Handling, and Recovery

TRL2 contains two important improvements over TRL1 in the area of handling errorsam $i@e
the NOTREADYondition and th&TREAM() built-in function. TheNOTREAD¥ondition is

153

raised whenever a stream I/O operation did not succeed&TRREAM() function is used to retrieve
status information about a particular stream or to execute a particular @péoath stream.

You can discover that an error occurred during an 1/O operation in one of the following ways: a)
may trigger &YNTAXcondition; b) it may trigger BOTREADXondition; or c) it may just not

return that data it was supposed to. There is no clear border between which situationsigheuld t
SYNTAXand which should trigg¢dOTREADXETrrors in parameters to the 1/O functions, like a
negative start position, is clearly5& NTAXcondition, while reading off the end-of-file is equally
clearly aNOTREADYondition. In between lay more uncertain situations like trying to position the
current write position after the end-of-file, or trying to read a non-existenofilusing an illegal

file name.

Some situations are likely to be differently handled in various implementations, budryagssume
that they are handled as eitl@fNTAXor NOTREADYDefensive, portable programming requires
you to check for both. UnfortunateNOTREADYs not allowed in TRL1, so you have to avoid that
condition if you want maximum compatibility. And due to the very lax restrictions on
implementations, you should always perform very strict verification on all dataed from any

file 1/O built-in function.

If neither are trappe®YNTAXwill terminate the program whildOTREADWiIll be ignored, so the
implementor's decision about which of these to use may even depend on the severity of the problem
(i.e. if the problem is small, raisirg§y NTAXmay be a little too strict). Personally, | thiSBk NTAX

should be raised in this context only if the value of a parameter is outside its vaiidornaly

contexts in which the function might be called.

Example: General NOTREADYondition handler

Under TRL2 the "correct" way to handd®OTREAD¥onditions and errors from I/O operations is
unfortunately very complex. It is shown in this example, in order to demonstrate the peocedur

154

myfile = 'MYFILE.DAT"
signal on syntax name syn_handler
call on notready name 10_handler
do i=1 to 10 until res=0

res = lineout(myfile, 'line #'1)

if (res=0) then

say 'Call to LINEOUT() didn"t manage to

write out data'

end
exit
IO_handler:
syn_handler:

file = condition('D’)

say condition('C") 'raised for file' file 'at line'
sigl'’

say ' 'sourceline(sigl)

say' State='stream(file,'S") reason:' stream
(file,'D")

call lineout(condition('D"')) /* try to close */
if condition('C")=='SYNTAX' then

exit 1
else

return

Note the double checking in this example: first the condition handler is set up to trap any
NOTREADYonditions, and then the return code froiNEOUT() is checked for each call.

As you can see, there is not really that much information that you can retrieve abowewhat
wrong. Some systems may have additional sources from which you can get informatigeced. s
commands for thE TREAM() built-in function, but these are non-standard and should be avoided
when writing compatible programs.

5.13Common Differences and Problems with Stream |I/O

This section describes some of the common traps and pitf&IEXX 1/0.

5.13.1Where Implementations are Allowed to Differ

TRL is rather relaxed in its specifications of what an interpreter musemgpit of the I/O system.
It recognizes that operating systems differ, and that some details musttbeHefimplementor to
decide, ifREXX is to be effectively implemented. The parts of the I/O subsyst&EXKX where
implementations are allowed to differ, are:

e The functiond INES() andCHARS() are not required to return the number of lines or
characters left in a stream. TRL says that if it is impossible or difficudalculate the numbers,
these functions may retufinunless it is absolutely certain that there are no more data left. This
leads to some rather kludgey programming techniques.

* Implementations are allowed to ignore closing streams, since TRL does no apeaif to do

this. Often, the closing of streams is implemented as a command, which only mades it m
incompatible.

155

¢ Check the implementation-specific documentation before using the fubtN&OUT (file)
for closing files.

« The difference in the action of closing and flushing a file, can m&eX&x script that works
under one implementation crash under another, so this feature is of very limited valuarné¢y
trying to write portable programs.

TRL says that because the operating system environments will differ a lot, dfidianteand

useful interpreter is the most important goal, implementations are allowed &bedieoim the
standard in any respect necessary in the domain of /0O [TRL2]. Thus, you should never assume
anything about the 1/0 system, as the "rules” listed in TRL are only advisory.

5.13.2Where Implementations might Differ anyway

In the section above, some areas where the standard allows implementations daoediffezd. In
an ideal world, that ought to be the only traps that you should need to look out for, but
unfortunately, the world is not ideal. There are several areas where the reqtsreeteip by the
standard is quite high, and where implementations are likely to differ from therstanda

These areas are:

* Repositioning at (for the current write position) or beyond the end-of-file may beedll@wn
some systems, to prohibit that would require a lot of checking, so some systems willyproba
skip that check. At least for some operating systems, the act of repositionirendfat-file is
a useful feature.

e Under Unix, it can be used for creating a dynamically sized random access file;xbbhewt
about how much space is allocated for the file, just position to the correct "sloth" satheri
data there. If the data file is sparse, holes might occur in the file; thatdop#re file which
has not been written, and which is all zeros (and which are therefore not stored on disk.

* Some implementations will use the same position for both the current read position and the
current write position to overcome these implementations. Whenever you are doing adead, a
the previous operation was a write (or vice versa), it is may prove useful to repdstion t
current read (or write) position.

e There might be a maximum linesize for y®REXX interpreter. At least the 50Kb limit on
string length may apply.

¢ Handling the situation where another program writes data to a file which is usedRiyXKe
interpreter for reading.

5.13.3LINES() and CHARS() are Inaccurate

Because of the large differences between various operating syRieXs,allows some fuzz in the
implementation of theINES() andCHARS() built-in functions. Sometimes, it is difficult to
calculate the number of lines or characters in a stream; generally béwaggeage format of the

file often requires a linear search through the whole stream to determine that.nCimuséREXX
allows an implementation to return the valur any situation where the real number is difficult or
impossible to determine. Effectively, an implementation can restrict the dafiaturn values for
these two functions onl{y andO from these two functions.

156

Many operating systems store lines using a special end-of-line charagtencse. For these
systems, it is very time-consuming to count the number of lines in a file, as timeifitdoe scanned
for such character sequences. Thus, it is very tempting for an implementor to rettaiué¢tiefor
any situation where there are more than zero lines left.

A similar situation arises for the number of characters left, although it is coanmon to know this
number, thus it is generally a better chanc€ldARS() returning the true number of characters left
thanLINES() returning the true number of lines left.

However, you can be fairly sure that if an implementation returns a number dgneaterthen that
number is the real number of lines (or characters) left in the stream. And seoultdy, if the
number returned i8, then there is no lines (or characters) left to be read in the stream. But if the
number isl, then you will never know until you have tried.

Example: File reading idiom

This example shows a common idiom for reading all contents of a filREXX variables using
theLINES() andLINEIN() built-in functions.

i=1
signal on notready
lleft = lines(file)
do while lleft>0
do i=i to i+lleft
line.i = linein(file)

end

lleft = lines(file)
end
notready:
lines.0 =i-1

Here, the two nested loops iterates over all the data to be read. The innermost lodpdatads a
currently available, while the outermost loop checks for more available data. lempétions
having aLINES() that return only) andl1 will generally iterate the outermost loop many times;
while implementations that returns the "true” number ftdNES() generally only iterates the
outermost loop once.

There is only one place in this code thlEIN() is called. Thé variable is incremented at
only one place, and the varialtlNES.O is set in one clause, too. Some redundancy can be
removed by setting th&HILE expression to:

do while word(value('lleft',lines(file)) lleft,2)>0

The two assignments to theEFT variable must be removed. This may look more complicated,
but it decreases the number of clauses having a ddIN®S() from two till one. However, it is
less certain that this second solution is more efficient, since USbhYE() built-in function can

be inefficient over "normal” variable references.

157

5.13.4The Last Line of a Stream

How to handle the last line in a stream is sometimes a problem. If you use a bgdtstores end-
of-lines as special character sequences, and the last part of the data of &ssireanterminated
line, then what is returned when you try to read that part of data?

There are three possible solutions: First, it may interpret the end-o&éleas an implicit end-of-

line, in this case, the partial part of the line is returned, as if it was propenipéed. Second, it

may raise th&lOTREADYondition, since the end-of-file was encountered during reading. Third, if
there is any chance of additional data being appended, it may wait until such datalavkeavaie
second and third approaches are suitable for persistent and transient filesyedgpect

The first approach is sometimes encountered. It has some problems though. If the erghof a str
contains the datABC<NL>XYZthen it might return the stringYZ as the last line of the stream.
However, suppose the last line was an empty line, then the last part of the stream would be
ABC<NL> Few would argue that there is any line in this stream after thABQeThus, the
decision whether the end-of-file is an implicit end-of-line depends on whether the wdakt-lxee
has zero length or not.

An pragmatic solution is to let the end-of-file only be an implicit end-of-fileef¢characters
immediately in front of it are not an explicit end-of-line character sequence.

However, TRL gives some indications that an end-of-file is not an implicit endeafltisays that
LINES() returns the number of complete lines left, and thidEIN() returns a complete line.

On the other hand, the end-of-line sequence is not rigidly defined by TRL, so an implementor is
almost free to define end-of-line in just about any terms that are comfortable.éhlasttline of a
stream may be a source of problem if it is not explicitly terminated by an eneof-|

5.13.50ther Parts of the 1/0 System

This section lists some of the other part®&XX and the environments arouR&EXX that may be
considered a part of the 1/0O system.

[Stack.]
The stack be used to communicate with external environments. REXX side, the
interface to the stack is the instructidfidSH PULL, PARSE PULL, andQUEUEand the
built-in functionQUEUED(). These can be used to communicate with external programs by
storing data to be transferred on the stack.

[The STREAM() built-in function.]
This function is used to control various aspects about the files manipulated with the other
standard I/O functions. The standard says very little about this function, and leaves it up t
the implementor to specify the rest. Operations like opening, closing, truncating, and
changing modes

[The SAY instruction.]
The SAYinstruction can be used to write data to the default output stream. If you use
redirection, you can indirectly use it to write data to a file.

[The ADDRESS instruction.]
The ADDRESS$nstruction and commands can be used to operate on files, depending on the
power of your host environments and operating system.

[The VALUE() built-in function.]
The functionVALUE() , when used with three parameters, can be used to communicate with
external host environments and the operating system. However, this depends on the

158

implementation of your interpreter.

[SAA APL.]
The SAA API provides several operations that can be used to communicate between
processes. In general, SAA API allows you to perform the operations listed above from a
binary program written in a language other tRaXX.

And of course, I/0 is performed whenevdREBXX program or external function is started.

5.13.6lmplementation-Specific Information

This section describes some implementations of stream REXX. Unfortunately, this has
become a very large section, reflecting the fact that stream I/O isaaofarany system-specific
solutions.

In addition, the variations within this topic are rather lafgegina implements a set of functions
that are very close to that of TRL2. The other extrem@&Rexx andBRexx, which contain a set
of functions which is very close to the standard 1/O library of the C programming ¢gngua

5.13.7Stream 1/O in Regina 0.07a

Regina implements stream /O in a fashion that closely resembles how it is ddsaribRL2. The
following list gives the relevant system-specific information.

[Names for standard streams.]
Regina uses<stdout> and<stdin> as names for the standard output and input streams.
Note that the angle brackets are part of the names. You may also access the eteordar

stream (on systems supporting this stream) under the «stioherr> . In addition, the
nullstring is taken to be equivalent to an empty first parameter in the |/@erddaiit-in
functions.

[Implicit opening.]
Regina implicitly opens any file whenever it is first used.

If the first operation is a read, it will be opened in read-only mode. If the first mpreiaa
write, it is opened in read-write mode. In this case if the read-write opening does not
succeed, the file is opened in write-only mode. If the file exists, the opening is non-
destructive, i.e. that the file is not truncated or overwritten when opened, elsedtedaf
opened in read-write mode.

If you name a file currently open in read-only mode in a write operd&iegina closes the
file, and reopens it in read-write mode. The only exception is when youl&DUT()

with both second and third arguments unspecified, which always closes a file, both for
reading and writing. Similarly, if the file was opened in write-only mode, and you ase it
read operatiorRegina closes and reopens in read-write mode.

This implicit reopening is enabled by default. You can turn it off by unsetting the extensi
ExplicitOpen

[Separate current positions.]
The environment in whicRegina operates (ANSI C and POSIX) does not allow separate
read and write positions, but only supplies one position for both operdtegsa handles
this by maintaining the two positions internally, and move the "real" current positikn bac
and forth depending on whether a read or write operation is next.

159

[Swapping out file descriptors.]
In order to defend itself against "open-many-close-none" programRéggna tries to
"swap out" files that have been unused for some time. Assume that your operating system
limits Regina to 100 simultaneously open files; when your try to open yout fliel
Regina closes the least recently used stream, and recycles its descriptor fow tiile.ne
You can enable or disable this recycling with 8veapFilePtr extension.

During this recyclingRegina only closes the file in the operating system, but retains all

vital information about the file itself. If you re-access the file |&Regina reopens it, and
positions the current read and write positions at the correct (i.e. previous) positions. Thi
introduces some uncertainties into stream processing. Renaming a file iafbedy if it

gets swapped out. Since the swap operation is something the users do not see, it can cause
some strange effects.

Regina will not allow a transient stream to be swapped out, since they often are connected
to some sort of active partner in the other end, and closing the file might kill the martner
make it impossible to reestablish the stream. So only persistent filesagmgesivout. Thus,
you can still fill the file table ifRRegina.

[Explicit opening and closing.]
Regina allows streams to be explicitly opened or closed through the use of the built-in
functionSTREAM(). The exact syntax of this function is described in sesti@am. Old
versions oRegina supported two non-standard built-in functi;ddBEN() andCLOSE()
for these operations. These functions are still supported for compatibility reasomsgHoiut
be removed in future releases. Their availability is controlled b@gsnBif and
CloseBif extensions.

[Truncation after writing lines.]
If you reposition line-wise the current write position to the middle of aRiésyina
truncates the file at the new position. This happens whether data is written during the
LINEOUT() or not. If not, the file might contain half a line, some lines might disappear,
and the linecount would in general be disrupted. The availability of this behavior is
controlled byLineOutTrunc , which is turned on by default.

Unfortunately, the operation of truncating a file is not part of POSIX, and it might isot ex
on all systems, so on some rare systems, this truncating will not occur. In order t® toe abl
truncate a file, your machine must havefthencate() system call irC. If you don't
have this, the truncating functionality is not available.

[Caching info on lines left.]
WhenRegina executes the built-in functiddNES() for a persistent stream, it caches the
number of lines left as an attribute to the stream. In subsequent ddNEIN() , this
number is updated, so that subsequent calliN&S() can retrieve the cached number
instead of having to re-scan the rest of the stream, provided that the number isdktill val
Some operations will invalidate the count: repositioning the current read positidimgrea
using the character oriented I/O, GHARIN() ; and any write operation by the same
interpreter on the stream. Ideally, any write operation should invalidate the counttbut tha
might require a large overhead before any operation, in order to check whether the file has
been written to by other programs.

This functionality can be controlled by the extension calladheLineNo , which is turned

on by default. Note that if you turn that off, you can experience a serious decrease in
performance.

160

The following extra built-in functions relating to stream I/O are defindgieigina. They are
provided for extra support and compatibility with other systems. Their support may detidised
in later versions, and they are likely to be moved to a library of extra support.

CLOSE(streamid)

Closes the stream nameddigeamid This stream must have been opened by implicit open or by
the OPENfunction call earlier. The function returhsf there was any file to close, afdf the file
was not opened. Note that the return value does not indicate whether the closing wasisuccess
You can use the extension nant@dseBif with theOPTIONSInstruction to select or remove
this function. This function is now obsolete, instead you should use:

STREAM(streamid, ‘Command’, 'CLOSE")

\ CLOSEmyfile) 1 if stream was open
\ CLOSE('NOSUCHFILE" 0 if stream didn't exist

OPEN(streamid,access)

Opens the stream namsileamidwith the accesaccesslf accesss not specified, the acceRs
will be usedaccesanay be the following characters. Only the first character chi¢hesss
needed.

[R]
(Read) Open for read access. The file pointer will be positioned at the startits, thed
only read operations are allowed.

W]
(Write) Open for write access and position the current write position at the enditd.the
An error is returned if it was not possible to get appropriate access.

The return value from this function is eitlfeor 0, depending on whether the named stream is in
opened state after the operation has been performed.

Note that if you open the filesdobar " and "/foobar " they will point to the same physical
file, butRegina interprets them as two different streams, and will open a internal file mesd¢ar
each one. If you try to open an already open stream, using the same name, it will have. no effec

You can use the extensi@penBif with theOPTIONSiInstruction to control the availability of

this function. This function is now obsolete, but is still kept for compatibility with ottergreters
and older versions dtegina. Instead, wittRegina you should use:

161

STREAM(streamid, 'C', 'READ'|'WRITE'|'APPEND'|'UPDATE")

OPEN(myfile, 'write") 1 maybe, if successful
OPEN(passwd, 'Write'") 0 maybe, if no write access
OPEN('DATA', 'READ") 0 maybe, if successful

The return value from this function is eitleor 0, depending on whether the named stream is in
opened state after the operation has been performed.

5.13.8Functionality to be Implemented Later

This section lists the functionality not yetRegina, but which is intended to be added later. Most
of these are fixes to problems, compatibility modes, etc.

[Indirect naming of streams.]
Currently, streams are named directly, which is a convenient. However, thelfewre a
problems: for instance, it is difficult to write to a file which namestdout> , simply
because that is a reserved name. To fix this, an indirect naming scheme will bedprovide
through theSTREAM()< built-in function. The functionality will resemble tiRPEN()
built-in function ofARexx.

[Consistence in filehandle swapping.]
When a file handle is currently swapped out in order to avoid filling the systenmbfiée ta
very little checking of consistency is currently performed. At least, vitatnmition about
the file should be retained, such as the inode and file system for Unix machingalrbirie
thefstat() call. When the file is swapped in again, this information must be checked
against the file which is reopened. If there is a mism&CWREAD$hould be raised.
Similarly, when reopening a file because of a new access mode is requestedethe sam
checking should be performed.

[Files with holes.]
Regina will be changed to allow it to generate files with holes for system wheresthis i
relevant. Although standaRIEXX does not allow this, it is a very common programming
idiom for certain systems, and should be allowed. It will, however, be controllable through a
extension calle®parseFiles

5.13.9Stream I/O in ARexx 1.15

ARexx differs considerably from standaREXX with respect to stream 1/O. In fact, none of the
standard stream functionality BEXX is available inARexx. Instead, a completely distinct set of
functions are used. The differences are so big, that it is useless to dagaibestream 1/O in
terms of standarBEXX stream I/O, and everything said so far in this chapter is irrelevant for
ARexx. Therefore, we explain thERexx functionality from scratch.

All'in all, the ARexx file I/O interface resembles the functions of the Standard C /O library,
probably becaus&Rexx is written in C, and thARexx I/O functions are "just" interfaces to the
underlying C functions. You may want to check up the documentation for the ANSI C I/O library a
described in [ANSIC], [KR], and [PJPlauger].

ARexx uses a two level naming scheme for streams. The file names are bound to a stream nam
using theOPEN() built-in function. In all other I/O functions, only the stream name is used.

162

OPEN(ane, fi | enane[, node])

You use th@OPEN() built-in function to open a stream connected to a file céillecamein
AmigaDOS. In subsequent I/O calls, you refer to the streamaras These two names can be
different.

Thenameparameter cannot already be in use by another stream. If &9PHEN() function fails.
Note that thenameparameter is case-sensitive. Tienameparameter is not strictly case-sensitive:
the case used when creating a new file is preserved, but when referring to ag ébasthe name

IS case-insensitive. This is the usual behavior of AmigaDOS.

If any of the other I/O operations uses a stream name that has not been properly oper@eiising
() , that operation fails, becaua®&exx has no auto-open-on-demand feature.

The optional parametenodecan be any dRead, Write , orAppend. The moddread opens an
existing file and sets the current position to the start of the file. The Apguend is identical to
Read, but sets the current positions to the end-of-file. The riddie creates a new file, i.e. if a
file with that name already exists, it is deleted and a new file is credtes, WithWrite you

always start with an empty file. Note that the terms "read," "write," gopktad" are only remotely
connected to the mode in which the file is opened. Both reading and writing are alloweaoffor all
these three modes; the mode names only reflect the typical operations of these modes

The result fronOPENY() is a boolean value, which 1sif a file by the specifietiamewas
successfully opened during t¥EN() call, and0 otherwise.

The number of simultaneously open files is no problem because AmigaDOS alldeatkaridles
dynamically, and thus only limited by the available memory. One system managed 2000
simultaneously open files during a test.

OPEN(infile', ‘work:DataFile") 1 if successful

OPEN(‘'work’, 'RAM:FooBar’, 'Read’) 0 if didn't exist

OPEN(output’, TmpFile', 'W") 1 (re)creates file
CLOSE(hane)

You use the€CLOSE() built-in function to close a stream. The paramegnemust match the first
parameter in a call tOPEN() earlier in the same program, and must refer to an open stream. The
return value is a boolean value that reflects whether there was a file to closet(whether it was
successfully closed).

\ CLOSE(infile") 1 if stream was previously open
\ CLOSE((outfile") 0 if stream wasn't previously open

163

WRITELN(nan®e, stri ng)

TheWRITELN() function writes the contents sfring as a line to the streamame Thename
parameter must match the value of the first parameter in an earlier ©&dEN(), and must refer
to an open stream. The data written is all the charactstsng immediately followed by the
newline character (ASCII <Ctrl-J> for AmigaDOS).

The return value is the number of characters written, including the terminatinge€ivlus, a
return value oD indicates that nothing was written, while a value which is one more than the
number of characters siring indicates that all data was successfully written to the stream.

When writing a line to the middle of a stream, the old contents is written over, buetma strnot
truncated; there is no way to truncate a stream witBRexx built-in functions. This overwriting
can leave partial lines in the stream.

WRITELN(tmp', 'Hello, world!") 14 if successful
WRITELN('work', 'Hi there') 0 nothing was written
WRITELN('tmp', 'Hi there") partially successful

WRITECH(ane, stri ng)

TheWRITECHY() function is identical t&WRITELN() , except that the terminating newline
character is not added to the data written out. TWIRI,TELN() is suitable for line-wise output,
while WRITECH() is useful for character-wise output.

WRITECH(tmp', 'Hello, world!") 13 if successful
WRITECH('work', 'Hi there") 0 nothing was written
WRITECH('tmp', 'Hi there') 5 partially successful

READLNpane)

TheREADLN() function reads a line of data from the stream referred talne The parameter
namemust match the first parameter of an earlier caDREN(), i.e. it must be an open stream.

The return value is a string of characters which corresponds to the charactestrgatimefrom and
including the current position forward to the first subsequent newline character found. Wimzne
character is found, the end-of-file is implicitly interpreted as a newline arehthef-file state is
set. However, the data returned to the user never contains the terminating end-of-line.

To differ between the situation where the last line of the stream was itggéerinated by the

end-of-file and where it was explicitly terminated by an end-of-line charsetgience, use tiEeOF
() built-in function. TheEOF() returnsl in the former case ariilin the latter case.

164

There is a limit inARexx on the length of lines that you can read in one c&BEADLNY(). If the
length of the line in the stream is more than 1000 characters, then only the first 100@charac
returned. The rest of the line can be read by additREADLN() andREADCH() calls. Note that
whenevelREADLN() returns a string of exactly 1000 characters, then no terminating end-of-line
was found, and a new call READLN() must be executed in order to read the rest of the line.

READLN('tmp’) Hello maybe
world!

' READLN('work') maybe, if unsuccessful

READCH((ane|[, | engt h])

The READCH() built-in function reads characters from the stream named by the paraareter
which must correspond to the first parameter in a previous dalPtEN(). The number of
characters read is given length which must be a non-negative integer. The default value of
lengthis 1.

The value returned is the data read, which has the length correspondintet@thparameter if no
errors occurred.

There is a limit inARexx for the length of strings that can be read in one c&BADCH(). The
limit is 65535 bytes, and is a limitation in the maximum size dhl@axx string.

READCH('tmp',3) Hel maybe

READCH('tmp’) I maybe

READCH('tmp',6) o worl maybe
EOF(nane)

TheEOF() built-in function tests to see whether the end-of-file has been seen on the stream
specified byname which must be an open stream, i.e. the first parameter in a previous@REtd

0 -

The return value i% if the stream is in end-of-file mode, i.e. if a read operation (eRE&XDLN()

or READCH()) has seen the end-of-file during its operation. However, reading the last chafacter
the stream does not put the stream in end-of-file mode; you must try to read at |efstraoter

past the last character. If the stream is not in end-of-file mode, the returns@lue i

Whenever the stream is in end-of-file mode, it stays there until a GHEK() is made. No read

or write operation can remove the end-of-file mode, &#¥K() (and closing followed by
reopening).

165

EOF('tmp’) 0 maybe
EOF('work’) 1 maybe

SEEK(nane, of f set [, node])

The SEEK() built-in function repositions the current position of the file specified by the panamete
name which must correspond to an open file, i.e. to the first parameter of a previousQRE kb

() . The current position in the file is set to the byte referred to by the parafisgtmMote that
offsetis zero-based, so the first byte in the file is numbérethe value returned is the current
position in the file after the seek operation has been carried throughBegjmgning mode.

If the current position is attempted set past the end-of-file or before the begintiedité, then
the current position is not moved, and the old current position is returned. Note that ittis legal
position at the end-of-file, i.e. the position immediately after the last chaddhe file. If a file
contains 12 characters, the valid range for the resulting new current position is 0-12.

The last parametemode can take any of the following values:

Beginning , Current , orEnd. It specify the base of the seeking, i.e. whether it is relative to the
first byte, the end-of-file position, or the old current position. For instance: for a 20|&yteth

current position 3, then offset 7 for bd®eginning is equivalent to offset -13 for baBad and

offset 4 forCurrent . Note that only the first character of tideparameter is required, the rest

of that parameter is ignored.

SEEK(tmp', 12, 'B") 12 if successful

SEEK('tmp', -4, 'Begin’) 12 if previously at 12

SEEK('tmp', -10, 'E") 20 if length is 30

SEEK('tmp', 5) 17 if previously at 12

SEEK('tmp', 5, 'Celcius’) 17 only first character in mode matters
SEEK('tmp', 0, 'B") always to start of file

5.13.10Main Differences from Standard REXX

Now, as the functionality has been explained, let me point out the main conceptual difdérenc
standardREXX; they are:

[Current position.]
ARexx does not differ between a current read and write position, but uses a common current
position for both reading and writing. Further, this current position (which it is callagsin t
documentation) can be set to any byte within the file, and to the end-of-file position. Note
that the current position is zero-based.

[Indirect naming.]
The stream 1/O operations ARexx do not get a parameter which is the name of the file.
Instead ARexx uses an indirect naming scheme. TREN() built-in function binds a
REXX stream name for a file to a named file in the AmigaDOS operating systenatand |

166

only theREXX stream name is used in other stream I/O functions operating on that file.
[Special stream names.]
There are two special file namesARexx: STDOUTandSTDIN, which refer to the
standard input file and standard output file. With respect to the indirect naming scheme,
these are not file names, but names for open streams; i.e. they can be used inGstream |/
operations other thaDPEN(). For some reason, is it possible to cI83®IN but not
STDOUT
[NOTREADY not supported.]
ARexx has ncNOTREADYondition. Instead, you must detect errors by calig-() and
checking the return codes from each I/O operations.
[Other things missing.]
In ARexx, all files must be explicitly opened. There is no way to reposition line-wise,
except for reading lines and keeping a count yourself.

Of course ARexx also has a lot of functionality which is not part of stand®EXX, like relative
repositioning, explicit opening, an end-of-file indicator, etc. But this functionaligscriptive
above in the descriptions of extended built-in functions, and it is of less interest here.

When anARexx script has opened a file Write mode, otheARexx scripts are not allowed to
access that file. However, if the file is opene®end or Append mode, then othekRexx scripts
can open the file too, and the same state of the contents of the file is seen by sll script

Note that it is difficult to translate between using stan@®EXX stream 1/O andRexx stream

I/O. In particular, the main problem (other than missing functionality in one of thersg)sis the
processing of end-of-lines. In stand&HXX, the end-of-file is detected by checking whether there
is more data left, while iARexx one checks whether the end-of-file has been read. The following
Is @ common standaREXX idiom:

while lines(‘file’)>0 /* for each line available */
say linein(‘file’) /* process it */
end

In ARexx this becomes:

tmp = readIn(‘file’) /* attempt to read first line */
do until eof(‘file’) /* if EOF was not seen */

say tmp [* process line */

tmp = readIn(‘file’) /* attempt to read next line */
end

It is hard to mechanically translate between them,

because of the lack of &0OF() built-in function in standar®@EXX, and the lack of &INES()
built-in function inARexx.

Note that in théARexx example, an improperly terminated last line is not read as an independent
line, sinceREADLNY() searches for an end-of-line character sequence. Thus, in the last invocation
tmp is set to the last unterminated line, B@F() returns true too. To make this different, make
theUNTIL subterm of thé&®Oloop check for the expressi&OF('file’) && TMP<>"

The limit of 1000 characters fREADLN() means that a generic line reading routinARexx

167

must be similar to this:

readline: procedure

parse arg filename

line ="

do until length(tmpline)<1000
tmpline = readIn(filename)
line = line || tmpline

end

return line

This routine calllREADLNY() until it returns a line that is shorter than 1000 characters. Note that
end-of-file checking is ignored, sinBEADLN() returns an empty string a the end-of-stream.

5.13.11Stream I/O in BRexx 1.0b

BRexx contains a set of I/O which shows very close relations with the C programmingdanfba
library. In fact, you should consider consulting the C library documentation for in-depth
documentation on this functionality.

BRexx contains a two-level naming schemeRIBXX, streams are referred to by a stream handle,
which is an integer; in the operating system files are referred to by arfies mahich is a normal
string. The functio®PEN() is used to bind a file name to a stream handle. HowB®&xx I/O
functions generally have the ability to get a reference either as a fileammh@estream handle, and
open the file if appropriate. However, if the name of a file is an integer which cartpreted as a
file descriptor number, it is interpreted as a descriptor rather than a name. WiyenewyseBRexx
and want to program robust code, always@B&N() and the descriptor.

If a file is opened by specifying the name in a I/O operation othelQR&N(), and the name is an
integer and only one or two higher than the highest current file descriptor, strangeayng
happen.

Five special streams are defined, having the pseudo file naBiEBIN>, <STDOUT>
<STDERR><STDAUX> and<STDPRN3>and are assigned pre-defined stream handles@rtam
4, respectively. These refer to the default input, default output, and default error outpuit, defa
auxiliary output, and printer output. The two last generally refer t€@wl1:andLPT1: devices
under MS-DOS. Either upper or lower case letter can be used when referring totinespe€ial
names.

However, note that if any of these five special files are closed, they can not be deageine The
reopened file will be just a normal file, having the name<5§.DOUT>

There is a few things you should watch out for with the special files. I/O involvingSthBAUX>

and<STDPRN>can cause thabort, Retry, Ignore message to be shown once for each
character that was attempted read or written. It can be boring and tedious toRnsivérthe text
string is long. IfA is answered3Rexx terminates.

You should never write data to file descriptok@TDIN>), apparently, it will only disappear.
Likewise, never read data to file descriptors 1 andSIDOUT>and<STDERRY, the former
seems to terminate the program while the latter apparently just returnsigtengulAlso be careful
with reading from file descriptors 3 and 4, since your program may hang if no dataablavail

168

OPEN(i | e, node)

The OPEN() built-in function opens a file named ble, in modemode and returns an integer

which is the number of the stream handle assigned to the file. In general, the strdinisheanon-
negative integer, whef@to 4 are pre-defined for the default streams. If an error occurred during the
open operation, the valug is returned.

Themodeparameter specifies the mode in which the file is opened. It consists of twolparts: t
access mode, and the file mode. The access mode part consists of one single, eilaicct=n

ber for readw for write, anda for append. In addition, thecharacter can be appended to open a
file in both read and write mode. The file mode part can also have of one additional character
which can be for text files and for binary files. The mode is default.

The following combinations of and access mode are possible:

r is non-destructive open for readingis destructive open for write-only modejs non-

destructive open for in append-only mode, i.e. only write operations are allowed, and all write
operations must be performed at the end-of-fitejs non-destructive open for reading and writing;
w+ is destructive open for reading and writing; ardis non-destructive open in append update,
I.e. reading is allowed anywhere, but writing is allowed only at end-of-file. xiste mode means
that the file is truncated to zero length when opened.

In addition, theb andt characters can be appended in order to open the file in binary or text mode.

These modes are the same as under C, althoughntioele character is strictly not in ANSI C. Also
note that , w, anda are mutually exclusive, but one of them must always be present. Thetnmsde
optional, but if present, it must always come immediately aftes ora. Thet andb modes are
optional and mutually exclusive; the default idf presentf orb must be the last character in the
mode string.

open('myfile’,'w") 7 perhaps
open('no.such.file','r’) -1 if non-existent
open(‘'c:tmp’,'r+b’) 6 perhaps

If two file descriptors are opened to the same file, only the most recently of thiks. Wowever,
if the most recently descriptor is closed, the least recently starts waaig There may be other
strange effects too, so try avoid reopening a file that is already open.

CLOSE(i | e)

The CLOSE() built-in function closes a file that is already open. The pararfietean be either a
stream handle returned fro@PEN() or a file name which has been opened (but for which you do
not known the correct stream handle).

169

The return value of this function seems to be the nullstring in all cases.

close(6) if open

close(7) if not open

close(‘'foobar’) perhaps
EOF(fil e)

TheEOF() built-in function checks the end-of-file state for the stream givdndyywhich can be
either a stream descriptor or a file name. The value returided ike end-of-file status is set for
the stream, and if it is cleared. In addition, the valug is returned if an error occurred, for
instance if the file is not open.

The end-of-file indicator is set whenever an attempt was made to read at lecish@uter past the
last character of the file. Note that reading the last character itfleibtvset the end-of-file
condition.

eof(foo) 0 if not at eof
eof('8") 1 if at eof
eof('no.such.file") -1 if file isn't open

READ([fil e][, |ength])

TheREAD() built-in function reads data from the file referred to byfileeparameter, which can

be either a file name or a stream descriptor. If it is a file name, and thatrfde currently open,
thenBRexx opens the file in mode . The default value of the first parameter is the default input
stream. The data is read from and including the current position.

If the lengthparameter is not specified, a whole line is read, i.e. reading forwards to and including
the first end-of-line sequence. However, the end-of-line sequence itself is no¢detlirthe
lengthparameter is specified, it must be a non-negative integer, and specified the number of
characters to read.

The data returned is the data read, except thextgthis not specified, the terminating end-of-line
sequence is stripped off. If the last line of a file contains a string unterminatieel &yd-of-string
character sequence, then the end-of-file is implicitly interpreted as an é&nd-dfowever, in this
case the end-of-file state is entered, since the end-of-stream was foundwokiilg for an end-of-
line.

read('foo’) one line = reads a complete line
read('foo’,5) anoth reads parts of a line
read(6) er line using a file descriptor

170

perhaps, reads line from default input

stream

read() hello
there

WRITE(file][,[string][, dummy]])

TheWRITE() built-in function writes a string of data to the stream specified bfflehparameter,
or by default the default output stream. If specifféd,can be either a file name or a stream
descriptor. If it is a file name, and that file is not already open, it is openedwisimgde.

The data written is specified by teing parameter.

The return value is an integer, which is the number of bytes written during the operatierfiléf
is opened in text mode, all ASCII newline characters are translated into @RCHcharacter
sequences. However, the number returned is not affected by this translation;nsreaependent
of any text of binary mode. Unfortunately, errors while writing is seldom trapped, sartiiser
returned is generally the number of character that was supposed to be written, indeggendent
whether they was actually written or not.

If a third parameter is specified, the data is written as a line, i.e. includiegdhef-line sequence.
Else, the data is written as-is, without any end-of-line sequence. Note th8Reixx, the third
parameter is considered present if at least the comma in front of it--the secamd-cis present.
This is a bit inconsistent with the standard operations oAR@() built-in function. The value of
the third parameter is always ignored, only its presence is considered.

If the second parameter is omitted, only an end-of-line action is written, independémtioémthe
third parameter is present or not.

write(‘bar’,'data’) 4 writes four bytes
write('bar','data’,'nl’) 4+7?7? write a line
write(‘bar’,'data’,) 4+7?7? same as previous

SEEK(fil e[,[offset][, origin]])

The SEEK() built-in function moves the current position to a location in the file referred fiteby
The parameteile can be either a file name (which must already be open) or a stream descriptor.
This function does not implicitly open files that is not currently open.

The parametenffsetdetermines the location of the stream and must be an integer. It defaults to
zero. Note that the addressing of bytes within the stream is zero-based.

The third parameter can be anyl@F, CUR or EOF in order to set the reference point in which to

recon theoffsetlocation. The three strings refer to top-of-file, current position, and end-of-file, and
either upper or lower case can be used. The default value is ?7??.

171

The return value of this function is the absolute position of the position in the file afssethe
operation has been performed.

The SEEK() function provides a very important additional feature. Whenever a file opened for
both reading and writing has been used in a read operation and is to be used in a write operation
next (or vice versa), then a call3&EK() must be performed between the two I/O calls. In other
words, after a read only a seeking and reading may occur; after a write, only seekimgting

may occur; and after a seek, reading, writing, and seeking may occur.

5.13.12Problems with Binary and Text Modes

Under the MS-DOS operating system, the end-of-line character sequefe>isLF>, while in C,
the end-of-line sequence is orlF>. This opens for some very strange effects.

When an MS-DOS file is opened for read in text modBRgxx, all <CR><LF>character
sequences in file data are translatedltb> when transferred into the C program. FurtBfexx,
which is a C program, interpreté F> as an end-of-line character sequence. However, if the file is
opened in binary mode, then the first translation frddR><LF>in the file to<LF> into the C
program is not performed. Consequently, if a file that really is a text file reedps a binary file

and read line-wise, all lines would appear to have a trad®ig>character.

Similarly, <LF> written by the C program is translatedtBR><LF>in the file. This is always
done when the file is opened in text mode. When the file is opened in binary mode, all data is
transferred without any alterations. Thus, when writing lines to a file which is d@pemnerite in
binary mode, the lines appear to have &liz>, not<CR><LF>, If later opened as a text file, this
IS not recognized as an end-of-line sequence.

Example: Differing end-of-lines

Here is an example of how an incorrect choice of file type can corrupt data. ABRexe running
under MS-DOS, usingCR><LF>as a end-of-line sequence in text files, but the system calls
translating this t&LF> in the file I/O interface. Consider the following code.

file = open(testfile.dat’, 'wt’) /* text mode */

call write file, '45464748'x, 'dummy' /* i.e. 'abcd' */
call write file, '65666768'x, 'dummy' /*i.e. 'ABCD' */
call close file

file = open(testfile.dat', 'rb") /* binary mode */

say c2x(read(file)) [* says '454647480D
*/

say c2x(read(file)) [* says '656667680D
*/

call close file

Here, two lines of four characters each are written to the file, while whemge&do lines of five
characters are read. The reason is simply that the writing was in text mdue esadltof-line
character sequence waSR><LF>; while the reading was in binary mode, so the end-of-line
character sequence was jgkF>. Thus, the<CR>preceding theLF> is taken to be part of the
line during the read.

To avoid this, be very careful about using the correct mode when opening files. Failure to flo so wi

172

almost certainly give strange effects.

173

174

6 Extensions

This chapter describes how extensionRégina are implemented. The whole contents of this
chapter is specific foRegina.

6.1 Why Have Extensions

Why do we need extensions? Well, there are a number of reasons, although not all of treege are
good reasons:

« Adaptations to new environments may require new functionality in order to easifgéetés
the operating system.

« Extending the language with more power, to facilitate programming.

« Sometimes, a lot of time can be saved if certain assumptions are met, so anexieyis be
implemented to allow programmers to take shortcuts.

* When a program is ported from one platform to another, parts of the code may depend of non-
standard features not available on the platform being ported to. In this situation, thleilgyail
of extensions that implement the feature may be of great help to the programmer.

e The implementor had some good idea during development.

Backwards compatibility.

Extensions arise from holes in the functionality. Whether they will survive or not dependsv
they are perceived by programmers; if perceived as useful, they will probablydoenalseus
supported in more interpreters.

6.2 Extensions and Standard REXX

In standardREXX, theOPTIONSInstruction provides a "hook" for extensions. It takes any type of
parameters, and interprets them in a system-dependent manner.

The format and legal values of the parameters foOfA€lONSinstruction is clearly
implementation dependent [TRL2, p62].

6.3 Specifying Extensions in Regina

In Regina there are three level of extensions. Each independent extension has its own name.
Exactly what an independent extension is, will depend on the viewer, but a claesifizeibeen
done, and is listed at the end of this chapter.

At the lowest level are these "atomic" extensions. Then there are someektegtsions”. These
are collections of other extensions which belongs together in some manner. If you need the
extension for creating "buffers" on the stack, it would be logical to use the extemssondve
buffers from the stack too. Therefore, all the individual extensions for operationsritib haffers
in the stack can be named by such a "meta-extensions". At the end of this chapterathstrefis
all the meta-extensions, and which extensions they include.

175

At the top is "standards”. These are sets of extensions that makes the imteghrate in a fashion
compatible with some standard. Note that "standard" is used very liberally tsimeperefer to

other implementations ®@EXX. However, this description of how the extensions are structured is
only followed to some extent. Where practical, the structure has been deviated.

6.4 The Trouble Begins

There is one very big problem with extensions. If you want to be able to turn them on and off during
execution, then your program has to be a bit careful.

More and mord&REXX interpreters (includinfRegina seem to do a parsing when the interpreter is
started. The "old" way was to postpone the parsing of each clause until it way acteclited.
This leads to the problem mentioned.

Suppose you want to use an extension that allows a slightly different syntax, fdeetlod tee
argument, let us assume that you allow an expression aft8EtHeCTkeyword. Also assume that
this extension is only allowed in extended more, not in "standard mode". HoweveReagica
parses the source code only once (typically at the starts of the program), the psabtatch-22:

the extension can only be turned on after parsing the program, but it is needed before passing. T
also applies to a lot of oth®EXX interpreters, and aREXX compilers and preprocessors.

If the extension is not turned on during parsing, it will generate a syntax error, butsiing pRall
done before the first clause is executed. Consequently, this extension can not be turned on during
execution, it has to be set before the parsing starts.

Therefore, there are two alternative ways to invoke a set of extensions; neitteclofs
implemented irRegina.

* It can be invoked by using the option to the interpreter. The word following the option is the
extension or standard to invoke. Multipke options can be specified.

» It can be invoked by setting the environment vari&HEXXEXTSwhich must be a string of the
same format as the parameters to@RI1IONSclause.

6.5 The Format of the OPTIONSclause

The format of th@©OPTIONSclause is very simple, it is followed by aR¥EXX string expression,
which is interpreted as a set of space separated words. The words are tietyeid strder from
left to right, and each word can change zero or more extension settings.

Each extension has a name. If the word being treated matches that name, thanextkha
turned on. However, if the word being treated matches the name of an extension but hasthe prefi

NQ then that extension is turned off. If the word does not match any extensions, then it is simply
ignored, without creating any errors or raising any conditions.

Example: Extensions changing parsing

An example of this is theINES BIF. In the following piece of code the same BIF returns different
data:

176

[* file 'aa’ contains 5 lines */

options FAST_LINES BIF_DEFAULT

doi=1to 2
if i=2 then OPTIONS NOFAST_LINES BIF_DEFAULT
say lines('aa’)

end

In the first iteration of the loof,INES (‘'a@’) returns 1, indicating that there is at least 1 line
remaining the the stream 'aa’. However, in the second iteration of th&.IN&S ('aa’) will return
5, indicating that there are 5 lines remaining in the stream.

Regina's frequent usage of extensions may slow down execution. To illustrate how this can happen,
consider th@©PEN() extra built-in function. As this is an extension, it might be dynamically

included and excluded from the scope of currently defined function. Thus, if the function is used in
a loop, it might be in the scope during the first iteration, but not the second REgiisa can not

cache anything relating to this function, since the cached information may be outtiatetsla
consequencdregina must look up the function in the table of functions for each invocation. To

avoid this, you can set the extens@©@ACHEEXTwhich tellsRegina to cache info whenever

possible, without regards to whether this may render useless later execu@dEIONS

6.6 The Fundamental Extensions

Here is a description of all "atomic" extensionfRegina:

[AREXX_BIFS]
This option allows the user to enable or disableAiREXX BIFs introduced int&kegina
3.1. The default iIBAREXX_BIFSon Amiga and AROS, biNOAREXX_BIFSon all other
platforms.

[AREXX_SEMANTICS]
With the introduction oAREXX BIFs intoRegina 3.1, differences in the semantics of a
number of BIFs resulted. These BIFs that differ betwi&tandardRegina andAREXX are
OPEN(), CLOSE() andEOF() . This OPTION specifies that tARREXX semantics be
used for these BIFs. The default is to Begina semantics for these BIFs.

[BUFTYPE_BIF]
Allows calling the built-in functioBUFTYPE(), which will write out all the contents of
the stack, indicating the buffers, if there are any. The idea is taken from VM/@l&sa
command nameBUFTYPE

[CALLS_AS_FUNCS]
Allows the old broken syntax of :

call myfunc(argl,arg2)

New programs should use the standard syntax faC&id_instruction. As the
determination of invalid syntax is done before the code is executed, then this OPTION ca
only be specified using the REGINA_OPTIONS environment variable.
NOCALLS_AS_FUNCH the default.

[CACHEEXT]
Tells Regina that information should be cached whenever possible, even when this will
render future execution of tl@PTIONSInstruction useless. Thus, if you use e.g.QREN
() extra built-in function, and you s ACHEEX(Tthen you may experience that bEEN
() function does not disappear from the current scope when you $4DMEEN_BIF
extension.

177

Whether or not a removal of an extension really do happen is unspecifie@&RHEEXT
has been called at least once. Effectively, info cached during the perioARMEEXT
was in effect might not be "uncached". The advantaggA@HEEXTs efficiency when you
do not need to do a lot of toggling of some extension.
[DESBUF_BIF]
Allows calling the built-in functiodESBUF(), to remove all contents and all buffers from
the stack. This function is an idea taken from the program by the same name under
VM/CMS.
[DROPBUF_BIF]
Allows calling the built-in functioddROPBUF(), to removed one of more buffers from the
stack. This function is an idea take from the program by the same name under VM/CMS.
[EXT_COMMANDS_AS FUNCS]
WhenRegina resolves an expression to a function, and that function is not a built-in or a
registered external functioRegina attempts to execute the function as an operating system
command. WittNOEXT_COMMANDS_AS_FUMNESGRegina will return error 43,;
"Routine not found"EXT_COMMANDS AS FUNG$he default.
[FAST_LINES_BIF_DEFAULT]
TheLINES() BIF in versions oRegina prior to 0.08g returned the actual number of lines
available in a stream. Since then, IHRES() BIF has been changed to only return O or 1.
This was done for two reasons. First, it is faster, and secondkNS&estandard allows for
an option to return the actual number of lines. This OPTION is for backwards compatibilit
with programs written assuming the prior behavior ofLtiNES() BIF.
FAST_LINES_BIF_DEFAULT is the default.
[FLUSHSTACK]
Tells the interpreter that whenever a command clause instructs the inteipfieteh the
commands output on the stack, and simultaneously take the input from the stack, then the
interpreter will not buffer the output but flush it to the real stack before the command has
terminated. That way, the command may read its own output. The default setting for
Regina is not to flush, i.eNOFLUSHSTACKuvhich tells interpreter to temporary buffer all
output lines, and flush them to the stack when the command has finished.
[INTERNAL_QUEUES]
Regina implements multiple named queues both as part of the interpreter, and as an external
resource. The use of tRXQUEUE()BIF, will makeRegina use the external queuing
mechanism. This OPTION allows the exclusive usReadina'’s internal queuing
mechanismNOINTERNAL _QUEUEIS the default.
[LINEOUTTRUNC]
This options tells the interpreter that wheneverliNEOUT() built-in function is
executed for a persistent file, the file will be truncated after the nevthemwtine, if
necessary. This is the default settindRefjina, unless your system does not have the
ftruncate() system call. The complement optioN©®LINEOUTTRUNC
[MAKEBUF_BIF]
Allows calling the built-in functioMAKEBUF(), to create a buffer on the stack. This
function is an idea taken from a program by the same name under VM/CMS.
[PRUNE_TRACE]
Makes deeply nested routines be displayed at one line. Instead of indenting the trace output
at a very long line (possibly wrapping over several lines on the screen). It dispjays at
the start of the line, indicating that parts of the white space of the line has besedem
[QUEUES_301]
This OPTION changes the behaviour of external queue naniReglina 3.1 meaning was

178

given to queue names. If a queue name had '@’ in its name, it was identified as an external
queue (requiring rxstack to be running). Before 3.1, any RM@UEUBIF was used, it
always referenced an external queue. New programs should use the naming convention to
identify external queues, because you will be able to use internal of external queties |
instructions like ADDRESS.WITH. The defaulthNeOQUEUES 301

[REGINA_BIFS]
This OPTION allows the user to turn off any nANSI extension BIFs. The default is
REGINA_BIFS.

[STDOUT_FOR_STDERR]

All output thatRegina would normally write to stderr, such as TRACE output and errors,
are written to stdout instead. This is useful if you need to capture TRACE output and normal
output from SAY to a file in the order in which the lines were generated. The default is
NOSTDOUT_FOR_STDERR

[STRICT_ANSI]

This OPTION results in interpretation of a program to s&NSI standards, and will reject

anyRegina extensionsNOSTRICT_ANSI is the default.
[STRICT_WHITE_SPACE_COMPARISON]

This OPTION specifies IRNSI rules for non-strict comparisons are applied. Urd¢Sl,

when doing non-strict comparisons, only the space character is stripped from the two

comparators. UnddRegina's default behavior, all whitespace characters are stripped.

NOSTRICT _WHITE_SPACE_COMPARIS@&Nnhe default.
[TRACE_HTML]

This OPTION generates HTML <PRE> and </PRE> tags around TRACE output, to enable
tracing from within CGI scripts. The defaultN©OTRACE_HTMI he following code shows
the necessary header information to enable this feature:

#!/usr/bin/rexx

OPTIONS STDOUT_FOR_STDERR TRACE_HTML

Parse Version ver

/* following 2 lines MUST be 'sayed' before TRACE turned on

*/

Say 'Content-type: text/html’

Say

Say ver

Trace i

Say 'With tracing on'

Trace o

Say 'With tracing off'

Return O

The output from this would look like:

179

£y http:fMocalhosticgi-binftrace.cgi - Kongue

Location Edit ¥iew Go Bookmarks Tools Settings
Window Help
G |

28N B X
E» Location || @] http#/localhosticgi- bindtrace cyi v

RExx-FRegina_3.3 5.00 25 Apr 2004
a8 *-* Lay 'With tracing on'
=L= "With tracing on”
With tracing on
5 *¥-% Trace o
With tracing off

Loading complete
| |

Note: OPEN_BIF, FIND _BIF , CLOSE_BIF andFILEIO OPTIONs have been removed in
Regina 3.1

6.7 Meta-extensions

[BUFFERS]
Combination oBUFTYPE_BIF, DESBUF_BIF, DROPBUF_BIFandMAKEBUF_BIF

6.8 Semi-standards

[CMS]
A set of extensions that stems from the VM/CMS operating system. Bgsiballincludes
the most common extensions in the VM/CMS versioREBKX, in addition of some
functions that perform task normally done with commands under VM/CMS.

[VMS]
A set of interface functions to the VMS operating system. Basically, thissniagREXX
programming under VMS as powerful as programming directly in DCL.

[UNIX]
A set of interface functionality to the Unix operating system. Basicallyjibludes some
functions that are normally called as commands when programming Unix she#.script
Although it is possible to call these as commanddgina, there are considerable speed
improvements in implementing them as built-in functions.

6.9 Standards

The following table shows which options are available in diffefREXX Language Levels, and
the default settings applicable feegina.

180

[ANSI]
REXX Language level 5.0, as described in [ANSI]. This can be set with the STRICT_ANSI
OPTION inRegina.
[REGINA]
REXX Language level 5.0, plus extensions, as implement&egina 3.1 and above.
[SAA]
REXX Language level ??, as defined by IBM's System Application Architecture][SAA
[TRL1]
REXX Language level 3.50, as described in [TRL1].
[TRL2]
REXX Language level 4.00, as described in [TRL2].

Option ANS| REGIN SAA TRL1 TRL2
A
AREXX_BIFS no yes no no no
AREXX_SEMANTICS no no no no no
BUFTYPE_BIF no yes ?7? no no
CACHEEXT no no no no no
CALLS_AS_FUNCS no yes no no no
DESBUF_BIF no yes ?7? no no
DROPBUF_BIF no yes ?? no no
EXT_COMMANDS_AS_FUNCS no yes ?? no no
FAST_LINES_BIF_DEFAULT no yes ?? no no
FLUSHSTACK no no ?? no no
INTERNAL_QUEUES no no ?? no no
LINEOUTTRUNC no yes ?? no no
MAKEBUF_BIF no yes ?? no no
PRUNE_TRACE no yes no no no
QUEUES_301 no yes no no no
REGINA_BIFS no yes no no no
STDOUT_FOR_STDERR no no no no no
STRICT_ANSI no no no no no
STRICT_WHITE_SPACE_COMPARISON no no no no no
TRACE_HTML no no no no no

181

182

7 The Stack

In this chapter, the stack and operations manipulating the stack are discussed. Since the stack is
external to thdREXX language, there are large differences between implementations with respect
to the stack. These differences are attempted described in the latter part of this.chapte

Another goal of this chapter is to try to describe both the "real" standards and some of the most
commonly used de facto standards related to stack operation. Where something is not a part of any
defined standard, this is clearly labeled. Also, some liberties have been taken in ordatd@cre
coherent vocabulary on a field where very little standardization has taken place.

7.1 Background and history

In the various definitions dREXX, there are numerous references to the "stack” (often called the
"external data queue"”, or just the "queue"). It is a structure capable of storimgatifor, but it is

not a part of th&@EXX language itself. Rather, it is a part of the external environment supporting a
REXX implementation.

Originally, the references to the stack was introducedRE¥X because of the strong binding
betweerREXX and IBM mainframes in the early historyREXX [BMARKS]. Most (all?) of the
operating systems for these machines support a stack, and many of their scriptiprogriaioms
involve the stack. Therefore, it was quite natural to introduce an interface to thansidEXX,
and consequently today many of the programming paradigREXX involve a stack.

Unfortunately, this introduced an element of incompatibility REXX, as the stack is not in
general supported for other operating systems. ConsequRBM)X implementors often must
implement a stack as well of the c&EXX interpreter. Since no authoritative definition of the
stack exists, considerable differences between various implementationsallypalthough the
stack was introduced to help communication between separate programs, the intgrpogie
implementations of stacks may actually be a hindrance against compatiliigebedifferent
interpreters.

The stack may have "seemed like a good idea at the time", but in hindsight, it was prdizably a
move, since it madBEXX more dependent on the host operating system and its interfaces.

7.2 General functionality of the stack

This section describes the functionality generally available in implenergadf stacks. The basic
functionality described here will be complemented with information on specifiemgitations
later. Unless explicitly labeled otherwise, this functionality is avaglabhll standards treated in
this documentation.

7.2.1Basic functionality

Below is listed the general functionality of the stack, in order of decreasing tbifitgal.e. the
functionality listed first is more likely to be a part of all implementatitvas tthe ones listed at the
end of the list.

* The stack is a data structure, which strings can either be inserted into aeexii@n. The

strings in the stack are stored in a linear order. Extraction and insertion woidgaatkrity of
a complete string, i.e. it is not possible to insert or extract parts of string.

183

» The stack has two ends: a top and a bottom. New strings can be inserted into the stack in both
ends, but strings can only be extracted from the top of the stack.

* There exists a way of counting the number of strings currently stored in the stack.

A stack is often compared with the pile of plates you often find in cantinas. It allows gdber

add new plates at the top of the pile or take old plates from the top. When a plate is takba from t
pile, it will be the most recently plate (that is still present) added to theSpdek operating in

REXX work the same way, although there also allow "plates” to be added to the bottom of the pile.

« There might be an implementation-specific limit on the length and number of stongd is
the stack. Ideally, the maximum length will be fairly large, at least 2**16, altheame
implementations are likely to enforce shorter limits. Similarly, theghtrbe a limit on the
number of strings that can be simultaneously stored in the stack. Ideally, there shoulddie no s
limit.

* Itis natural that there are limits imposed on the amount of memory occupied byrthe isiri
the stack. Some implementations are likely to reserve a fixed (but perhaps adigpamount
of memory for this purpose while others can dynamically re-size the stack as lenguah
memory is available.

* Some implementations might restrict the set of characters allowedgssimithe stack,
although ideally, all characters should be allowed, even characters normally used-&ine
or end-of-string.

This documentation use the term "string", while "line" is in common use elsewherérim is

used because the strings in the stack are not inherently interpreted as linesaihaviplied end-

of-line), only as a string.

Note that the stack itself is not a parREXX, only the parts which interface to the stack.
Example: Using the stack to transfer parameters

This is a commoREXX idiom used in several situations for special parameter passing. The
following code illustrates its use:

184

90 i=1to 10 [* for each parameter string

/ queue string.1 / put the string on the stack
e/nd

i:/all subrout 10 [* call the subroutine

exit

subrout: procedure /* the definition of the subroutine
*/

do j=1to arg(1) [* for each parameter passed
*/

parse pull line.j /* retrieve the

parameter */

end
/*do something with the
parameters*/

return

In this example, ten parameter strings are transferred to the sub®UBROUTThe parameters
are stored in the stack, and only the number of parameters are transferredlasuatireant.

There are several advantages: first, one avoids problems related to exposbig man#es. Since

the data is stored on the stack, there is no need to refer to the variable names and birdblge vari
in the subroutine to variables in the caller routine. In [TRL1], indirect referencesiaibles in
PROCEDURE EXPOSE&illegal, and this method circumvent the problem.

Two other ways around this problem is to ISSERPRETfor thePROCEDURE EXPOSE
instruction in order to dynamically determine which variables to expose; or to WgAlthd=()
built-in function (with its two first parameters). The former is incompatible WRL2, while the
latter is incompatible with TRL1. Using the stack can solve the problem in a fashipatdadm
with both standards. Anyway, if the called routine is an external routine, then exposimptdoes
work, so using the stack to transfer values may be the only solution.

Another advantage of this idiom; TRL only requires implementations to support 10 pasaioete
subroutines. Although there are no reasons why an implementation should set a limit forliee num
of parameters a routine can get, you should use another mechanism than arguments when the
number of strings is greater than 10. Using the stack fixes this.

7.2.2LIFO and FIFO stack operations

As already mentioned, the stack is a linear list of strings. Obviously, thisdisivbhands. Strings
can only be extracted from one end, while strings can be added to both ends.

If a set of new strings are added to the same end as they are later extoaci¢aefistrings will be
extracted in the reversed order with respect to the order in which they were addésicalesl
stacking "LIFO", which means "last-in-first-out”, meaning that the lasigsstacked, will be the
first string extracted, i.e. reversal of the order.

Similarly, when a set of strings are stacked in the end opposite to the end which tatr are
extracted from, they will be extracted in the same order in which they wekedtd his is referred
to as "FIFO" stacking, meaning "first-in-first-out".

185

The FIFO method of stacking is also sometimes referred to as "queueing”, wiilEGheethod is
sometimes referred to as "stacking" or "pushing".

7.2.3Using multiple buffers in the stack

The concept of buffers and everything directly related to buffers lay without the domain ofdstandar
REXX. Thus, this section describes a de facto standard.

Note that Regina supports multiple buffers only in internalstacks.

Some implementations support "buffers”, which are a means of focusing on a part afikhe sta
When creating a new buffer, the old contents of the stack is somewhat insulated fréfecth®f
stack operations. When the buffer is removed, the state of the old buffer i restored, tatsoine e
Whenever a string is read from the stack, and the topmost buffer on the stack is emptgtthen t
buffer will be destroyed. Consequently, if this situation has arisen, dropping bufflenstwistore
the state of the stack before the buffer was created.

The functionality of buffers, and their effect on other stack operations may diffedeidy
between implementations.

Whenever a queuing operations is performed (e.g. b@tHeUEnstruction), then the new string is
inserted into the bottom of the topmost buffer, not the bottom of the stack. This is the $eme if t
stack has no buffers, but else, the outcome of the queuing operation can be very different.

With IBM mainframe operating systems like CMS, buffers can be inserted on thethampstéck.
To perform buffer operations, operating system commands are used. It may be amstrtwtiist
the buffer operations of CMS:

[DESBUF]
Removes all strings and buffers from the stack, and leaves the stack clean and &npty. |
often used instead of repeated callDROPBURt always returns the value zero.
[DROPBUF]
Removes zero or more buffers from the stack. It takes one parameter which candxg omitt
and which must be an integer position if specified, and is the assigned number of the
bottom-most buffer to be removed, i.e. that buffer and all buffers above it (and of course, all
the strings in these buffers) are to be removed. If the parameter is not specifi¢de onl
topmost buffer is removed. The return valued is always zero, unless an error occurred.
[MAKEBUF]
Makes a new buffer on the stack, starting at the current top of the stack. The returis code (a
stored in the special varialdRQ) is the number of buffers currently on the stack after the
new buffer has been added. Obviously, this will be a positive integer. This program takes
no parameters.

One might regard a buffer as a sort of bookmark, which is inserted into the stack, so that a
subsequernDROPBUEommand can remove the stack down to a particular such bookmark.

When such a mark is located on the top of the stack, Bl & instruction is executed, the buffer
mark is implicitly destroyed when th&UJLL instruction reads the string below the buffer mark.
This is to say that a buffer can be destroyed by eitbdESBUFcommand, ®ROPBUEommand,
or a read from the stack (by either fdLL or PARSE PULL instructions).

186

7.2.4The zeroth buffer

Normally, data pushed on the stack is added to the top of the stack. When a stack contains only one
buffer, the strings in that buffer are the strings stored above that buffer-markringe Iselow it
are not part of the first buffer; instead, they are said to belong to the zeroth buffer.

Thus, all strings from the bottom of the stack, up till the first buffer mark (or the tbp stdck if
no buffers exist) is said to be the strings in the zeroth buffer. However, note thatthebréfer is
only defined implicitly. Thus, it can not really be removed by calROP only the strings in the
zeroth buffer are removed. Afterwards, the zeroth buffer will still contairtradgs at the bottom of
the stack, up till the first buffer mark (if existing).

Example: Process all strings in the stack

This is a commoREXX idiom, where a loop iterates over all the strings currently in the stack, but
otherwise leave the stack untouched. Supposing the reRREECESS() exists, and do to
processing with its parameter and return the processed string:

doi=1to5 [* just to fill the stack */
push 'line #' i
end
do queued() [* foreach line in the stack */
parse pull line [* fetch the line
*/
gueue process(line) /* put back the processed
line */
end

Here, it is important to uSRUEUHO put the strings back into the stack, RQISH else the loop

will iterate the correct number of times, but only operate on the same data starasd important

that the stack does not contain any buffers. S@IdEUEBEwill insert into the bottom of the topmost
buffer, the loop would iterate the correct number of times, but only on a part of the stack. Thus, the
topmost part of the strings in the stack would be processed multiple times.

Example: How to empty the stack

The following short example shows how you can most easily empty the stack:

doi=1to 5 * Just to fill the stack */
push 'line #' i
end
do queued() [* For each line in the stack */
pull /* Remove the line from the
stack */
end

This is trivially simple, but there are several interesting and subtle notexkeahout this
example. First, if the number of strings in the stack is likely to change, due to stemmalkex

187

process, then theOclause should perhaps better be written as:

doi=1to5 /* Just to file the stack */
push 'line #' i
end

do while queued()>0 /* While the stack is not empty */
pull /* Remove a line from the

stack */

end

This will in general mean more work for the interpreter, as it is now required tk ttfeeoumber of
strings in the stack for each iteration, while for the previous code fragment, the rofratogrgs is

only checked once. Another point is that this might not remove all buffers from the stack. Suppose
the zeroth buffer is empty, i.e. there exists an buffer which was put on the stack wtaokiveas
empty. This buffer is removed in any of the following situations: caliB&BUF: calling
DROPBUKsometimes), or reading a string below the buffer mark. Since there are nolsttows

the buffer mark, pulling a string from the stack would make the interpreter reachiedwaytboard,

and hang the interpreter.

Thus, the only "safe" way to remove the string and buffers from the stack, withoutfeads, & to
call DESBUFor DROPBUF On the other hand, if you only want to make sure that there are no
strings in the buffer, the method described here is more suitable, since it is¢acamgratible
(although possibly not so efficient). But anyway, buffers are not a compatible cqorstrilctoes
not matter so much.

7.2.5Creating new stacks

The description of multiple stack operations in this section, is not part of standard R&XX it
implemented in Regina. Thus, this section describes a de facto standard and you may find that
few implementations support these operations.

Just as the operations described above IdREXX programmer use multiple buffers within one
stack, there exists another set of operations which let the programmer arkge stacks. There
is really nothing fancy about this, except that a command will swap the stack tpeeciate
correctly uses with another stack.

To the interpreter this is really equivalent to a situation where a command®thpt®irrent stack,
and sets up a new stack. When one stack is empty, aRENXX program tries to read from the
stack, the request will not "overflow" to the previous stack (as requests to an emgty buff
"overflows" to the previous buffer). Thus, the use of multiple stacks has even lessjaton
REXX interpreters than multiple buffers.

Here, it is instructive to list the commands operating multiple stacks tlsés$.€khis list has been
taken from the MVS environment, according to [REXXSAA].

[DELSTACK]
Is used to remove the most currently stack, and make the most recent of the savelaestacks t

current stack. When there are no saved stacks, the current stack is emptied.
[NEWSTACK]

Creates a new stack, which becomes the current stack. The old current stack is puipon the t
of the list of saved stacks, and can be retrieved as the current stack by a subsequent

188

DELSTACK

[QBUF]
Counts the number of buffers in the current stack, and returns that number as the return
value. AREXX program starting this command can retrieve this value as the special variable
RC

[QELEM]
Counts the number of strings (i.e. elements) in the current stack, and returns thag ttadue a
return value of the command. This value can be retrievBENXX as the special variable
RC This operation is equivalent to tRRJEUED() built-in function inREXX; it has been
probably included for the benefit of other script languages that have less functithvaadity
REXX.

[QSTACK]
Counts the number of stacks (including the current stack) and returns the value asrthe retur
value from the command. This number can be retriev&EXX as the special variabRC

One can regard multiple buffers and stacks as two ways of insulating the staeknwitieole
stacks are a deeper and more insulating method than buffers. Note that each stackican cont
multiple buffers, while a buffer can not contain any stacks. The term "hard buffetsédrasised
about multiple stacks, as opposed to normal buffers, which are sometimes called feft.buf

Also note that neither multiple stacks nor buffers are part of staRfiaXX, so you might come
across implementations that support only multiple stacks, only buffers, or even none of them.

Example: Counting the number of buffers

In order to count the number of buffers on the stack, the following method can b&eageth(
syntax has been used for buffer handling). This method is equivalent@®thiecommand
described above.

buffers = makebuf() - 1
call dropbuf

This will store the number of buffers in the stack in the varibbféers . However, just as for the
other examples using buffers, this example also suffers from the fact thatHauféding is fairly
non-standard. Thus, you will have to adapt the code to whatever system you want to use.

7.3 The interface between REXX and the stack
As defined in TRL, the interface to the stack consists oPtheSE PULL, PULL, PUSH and
QUEUENstructions; and th@UEUED() built-in function.

There exists a binary interface to the stack in SAA, see the chapter on the $AkeiBce. This
interface consists of tRXMS@xit handler and th@UENAMEalue of theRXSHV_PRIVrequest
of theRexxVariablePool() function of the variable pool interface.

7.4 Strategies for implementing stacks

As mentioned, stacks are rarely a part of the operating system. Therefore, uridgyaraisg
systemsREXX interpreters have to implement their own stacks. There are several sg&begi
doing this, some which are listed below.

189

[In the operating system.]
This is of course "the right way" to do it. However, it requires that the definition of the
operating system is such that stacks are supported. Currently, only IBM mathiaste
systems support stack, together with a few other systems that have includedstacks
consequence of makirREXX a main scripting language (Amiga and OS/2 come to mind).

[As a device driver.]
This is really just a variation of making the stack a part of the operating systevaver, in
some systems, drivers can be added very easily to the system. Drivers aréefisteri-
based, in which case driver-based stack operations must operate on a file or pseudb-file. B
for some systems, adding a driver requires much more profound changes, reconfiguration,
and often system privileges. In all cases, drivers are likely to be very syséeific.

[As a daemon.]
A "daemon" is background process that does some housekeeping service, e.g. handling mail
from remote systems. Implementing a stack as a daemon is only slightlyrdimaple@ising a
driver, but the main idea is the same for both approaches.

[In the interpreter.]
Using this approach, the stack is built into the interpreter as a sort of extensias.offtes
the simplest way, since it require very little coordination with other progranrggdwin-
time. The main problem is that the stack becomes private to the interpreter, so two
interpreters can not use the same stack; not even if they are two invocations ofethe sam
interpreter.

These items are listed in the order of how closely they are coupled to the opesteny ye first
items are very closely, while the last items are loosely coupled. The maly dospled the
implementation of a stack is coupled to the operating system, the better is thetohteeeeral
interpreters on the same system can communicate in a compatible way, usiagkthe st

There is room for several hybrid solutions, based on the four fundamental approaches. Fer instanc
a built-in stack can also act as a daemon.

Regina supports the stack as both a daemon and internal to the interpreter.
Example: Commands takes input from the stack

In the example above, the routine that is called takes its arguments from the statskly S
commands to an external environment can get their arguments in the same way aHereample
of how to do it:

gueue '‘anonymous' [* the username */
queue 'user@node’ [* the password */
gueue 'dir' [* first command */
queue 'exit’ [* second command */

address command 'FTP flipper.pvv.unit.no'

Although this is very convenient in some situations, there is also considerable disgelvanth

this method: There is no real interactive communication between the interpiittbeacommand,;
i.e. all input meant for the command must be set up before the command itself is invoked.
Consequently, if one of the input lines to the command provokes an error, there is verydittle er
handling facility. Commonly, such an error might start a cascade of errors, am#iaing input

190

lines are likely to be invalid, or even be interpreted in a context different from hdyatvere
intended.

As with all commands involving the stack, it is important to push or queue the correct order.

Using this technique, a program can "fool" a command to do almost anything, by storingetbe corr
input on the stack. However, there is a big disadvantage: Since the stack is imglementa
dependent, it is not certain that a command will take its input from the stack. For stenessyhis

is the default, while for other systems, this is only possible through some exgilait &ome

systems might not even allow commands to take their input from the stack at all.

Example: "Execing" commands

Many script programming languages can only execute commands while still runrangnost

start a new command immediately after the termination (likextee() system call in Unix).
However, the stack can be used on some systems to set up the system to execute one or more
commands after the current script terminates. Here is an example:

push 'Is' [* finally execute 'ls' */
push 'who' [* then execute 'who' */
push 'pwd' [* first execute 'pwd" */
exit 0

Supposing that the system reads its commands from the stack if the stack is npthemphys

script will terminate after having set up the stack so that the three compvaaidsho andls will

be run in that sequence. Note the ordeQUIEEUEhad been used, the order would be the opposite,
which is perhaps more intuitive (assuming the topmost buffer is empty).

As with the example above, this too is only relevant for some systems, thus is not veayilolem
and you should be careful when using it. It also suffers from the lack of interactikatyhandling,
and the importance of the order in which the strings are pushed or queued. For all prastcal, re
this is just a special case.

Using the stack to "leave behind" command names and input only works for systems where
command interpreters and commands reads their input from the stack. This is intgeaéoal
IBM mainframe systems, but very few other systems.

7.5 Implementations of the stack in Regina

In Regina, the stack is implemented as both an integral, private part of the interpreter and as a
cross-platform external stack able to be used by multiple clients on multiphén@sidnternal
stacks provide the obviousadvantage of speed at the expense of data sharing. Extes@akestac
considerably slower, but do enable data sharing between instances of Regina and/argtaspr

Regina supports the standard TRL (and ANBEXX stack interface functionality, lIKkeARSE
PULL, PULL, QUEUEPUSH theQUEUED() built-in function, and in future versions, support the
SAA API stack interface. These commands and functions operate on both the internatiarad ext
stacks.

191

7.5.1lmplementation of the internal stack in Regina 2.2

Whenever th&REXX programmer wants to execute a command and let that command either flush
the output to the internal stack, or read its input from the internal stack, this has tnigedby

the interpreter itself. IRegina this is normally done by prepending or appending certain terms to
the command to be executed.

Consider the following command clausesRagina:

‘Is >LIFO'

'‘who >FIFQ'
'LIFO> wc'

'LIFO> sort >FIFO'

For all these commands, the "piping" terms are stripped off the command stringthefore
command is sent to the command interpreter of the operating system. Thus, the command
interpreter only sees the commartgls who, wc, andsort . The terms stripped off, are used as
indicators of how the input and output is to be coupled with the stack. The use of input/output
redirection as above is only available with the internal stack.

Note that it is important not to confuse the redirection of output to the stack and input from the
stack inRegina with the redirection of the Unix shells. The two can be mixed in command lines,
but are still two different concepts.

The first command will execute thee command, and redirect the output from it to the stack in a
LIFO fashion. The second executes the comnwaémaland redirects the output to the stack to, but in
a FIFO fashion. The third command executesabebut lets the standard input of that command
come from the stack. Actually, it is irrelevant whethd#¥O> or LIFO> is used for input; the

strings are read from the top of the stack in both cases. The fourth command iga plain
command without any redirection to or from the stack. The last command execiged the
program and lets it read its input from the stack, and redirect the output to the stack.

Regina allows a command to take both an input and an output "redirection” to a stack, as showed in
the last example above. However, it also guarantees that the output is not avaitebktank

before the command has terminated. The output from the command is stored in a temp&rary sta
and flushed to the ordinary stack after the command is terminated. Thus, the commandsteitt not

to read its own output.

Note that this temporary buffering of command output is the default behavior, which migit be s
up to something different at your site.

In addition, you can change it through ®EBTIONSInstruction, by using eithéfLUSHSTACKor
BUFFERSTACIas "parameters”.

Note the difference betweétegina's redirection and Unix redirection. Regina, only the term
LIFO> (when first in the command string), and the texbd-O and>FIFO (when last in the
command string), will be interpreted as redirection directives. These telirbg stripped off the
command string. All other redirection directives will be left untouched. If you should happen t
need to redirect output from a Unix command to theMileO or LIFO, then you can append a
space at the end or specify the file as ./FIFO of ./LIFO. That will rR&kgna ignore the
redirection term.

192

Note that this particular form of redirection of command input and output will most probably
disappear in future versions Regina, where it will probably be replaced by an extended
ADDRESSnstruction.

In addition to the ANSI standard, there are a few extra built-in functions, which are stippos
provide compatibility with otheREXX implementations, principally CMS REXX. These are
BUFTYPE, DESBUF, DROPBUF and MAKEBUF. See the descriptions of these funetiba i
built-in functions section above.

7.5.2Implementation of the external stack in Regina 2.2

The implementation of the external stack follows the model used byREXX, but is
implemented as an operating system daemon. This daemxsiteisk.
rxstack

Under most operating systemsstack is started from the operating system's startup process and
terminates when the machine is shutdown. Under Windows NT/2000, it runs as a Service.

Communication betweemnxstack andRegina is done via TCP/IP sockets. Using sockets as the

IPC mechanism on a local machine is somewhat slow compared to other mechanisms such a
shared memory or named pipes. It does however enable operation between machines on different
operating systems to function seamlessly.

The full syntax of the rxstack command is:

rxstack [switch]

switch is one of the following switches
-install installs the NT Service; Rexx Stack - Windows NT/2000 only
-remove removes the NT Service; Rexx -Stack - Windows NT/2000 only
-run runsrxstack in a command prompt - Windows NT/2000 only
-d runrxstack as a daemon - Unix only
-k kills (stops) rxstack - subject to being a valid killer - see Security of

External Queues

To stoprxstack, the process can be killed with a SIGINT or SIGTERM or by runmstgack with
the-k switch.

rxqueue

To allow nonREXX program to interface to th@stack daemon, a companion programgueue,
is provided rxqueue communicates with noREXX programs via its stdin and stdout.

Consider the following equivalents fBegina’s internal and external stack

'Is >LIFO' 'Is | rxqueue /lifo’
'‘who >FIFQO' '‘who | rxqueue /fifo'
'LIFO> wc' rxqueue /pull | wc'
'LIFO> sort >FIFO' rxqueue /pull | sort | rxqueue /
fifo'

The full syntax of thexqueue command is:

193

rxqueue [queue] [switch]

queue is aRegina external queue name — see the next section for structure. If no queue is
specified rxqueue uses the queue name; SESSION
switch is one of the following switches — as per OREXX
/fifo gueue lines from stdin LIFO onto
the queue
/lifo gueue lines from stdin FIFO onto
the queue
/clear remove all lines from the queue

the following switches arRegina extensions
/queued return the number of lines on the queue
/pull pull all lines from the queue and
display on stdout

rxqueue Built-in Function

REXX programs communicate witkstack via the normal queueing mechanisms of QUEUE,
PUSH, PULL and QUEUED(). These commands operate on the current queue and have no
mechanism for changing the queue to use. This is RXEPREUE() is used. Its primary purpose
is to control the queue that the remainder ofREXX program operates on.

Queue Names

To enable the use of tiREXX stack as a cross-platform, multi-machine IPC, the naming
conventions adopted by OSREXX has been modified. As OSREXX queues are local to a

single machine, queue names have no structure. To enable identification of queues on different
machines, some structure must be built into external queue narRegioid. An external queue
name orRegina has the following format:

[queue][@machine[:port]]

The components of the queue name are:

queue the name of the queue. The only criteria for the name is that it contains none of the
following characters: @, . or .. The queue component can be blank, when specifying
the default queue on a specified machine.

machine the machine that hosts the specified queue. This can either be a standard IPv4 IP
address or a machine name that can be resolved to a standard IPv4 IP address. The
machine name is optional, and defaults to 127.0.0.1

port The port number thakstack on machine is listening to. The default port number for
rxstack is 5757.

When referring to queues on the local machine, the machine and port components need not be

specified. The behaviour of the external stack is then the same as fdREXS2 with the

exception that the queues on the local machine can still be manipuld&egdibg on another

machine.

Some examples may make this clearer. TBD

194

Security of External Queues

(Not implemented yet)

A daemon process likexstack, waiting on a TCP/IP socket for anyone to connect to and use is
open to abuse. To reduce the opennessstdck, it uses a security mechanism much like the
Unix hosts.allow and hosts.deny files is used to control accesstaak.

Environment Variables

RXQUEUE
RXSTACK

195

196

8 Interfacing Rexx to other programs

This chapter describes an interface betwe®&EXX interpreter and another program, typically
written in C or another high level, compiled language. It is intended for application programmers
who are implementinBEXX support in their programs. It describes the interface known as the
REXX SAA API.

8.1 Overview of functions in SAA
The functionality of the interface is divided into some main areas:

e Subcommand handlers
which trap and handle a command to an external environment.
* External function handlers
extend thdREXX language with external functions
e Interpreting
REXX scripts, either from a disk file, or from memory.
* Variable interface
which makes it possible to access the variables in the interpreter, and allovi®opdike
setting, fetching and dropping variables.
e System exits
which are used to hook into certain key points in the interpreter while it executgs.a scr
« External Queue interface
which allows access feegina's external queuing mechanism.
¢ Macrospace functions
which are used to load and save external macrofRegina's macrospace for faster
execution.
¢ Memory Allocation functions
which provide for platform-independent memory allocating/deallocation functions.
» Callback functions
which are used to allow the API program to execute a procedure within the running script.

In the following sections each of these areas are described in detail, and a numleébat bri
complete examples are given at the end of the chapter.

The description is of a highly technical nature, since it is assumed that thewébbleran
application programmer seeking information about the interface. Therefore, mucltohtéet is
given as prototypes and C style datatype definitions. Although this format is ¢oyptian-C
programmers, it will convey exact, compact, and complete information to the inteadedste
Also, the problems with

ambiguity and incompleteness that often accompany a descriptive prose text@ed.avoi

8.1.1Include Files and Libraries

All the C code that uses tiREXX application interface, must include a special header file that
contains the necessary definitions. This file is caketsaa.h. Where you will find this file,
will depend on you system and which compiler you use.

Also, the interface part between the application andRE€X interpreter may be implemented as a
library, which you link with the application using the functions described in this chaptenaiies

197

of

this library, and its location might differ from system to system. Under Uni|ititary can be
implemented as a statfitbregina.a) or dynamic librarylibregina.[so|sl]). Under other platforms
Regina is also be implemented as a static or dynamic library.

8.1.2Preprocessor Symbols

Including a header file ought to be enough; unfortunately, that is not so. Each of the domains of
functionality listed above are defined in sepasstetionsin therexxsaa.h header file. In order for
these to be made available, certain preprocessor symbols have to be set. For instdrase i
include the following definition:

#define INCL_RXSHV
in order to make available the definitions and datatypes concerning the variable ptaaentene
various definitions that can be set are:

INCL_RXSUBCOM
Must be defined in order to get the prototypes, datatypes and symbols needed for the
subcommand interface of the API.
* INCL_RXFUNC
Must be defined in order to get the prototypes, datatypes and symbols needed for the
external function interface of the API.
* INCL_RXSYSEXIT
Must be defined in order to get the prototypes, datatypes, and symbols needed for the
system exit functions
e INCL_RXSHV
Must be set in order to get the prototypes, symbols and datatype definitions necegsary t
theREXX variable pool.
* INCL_RXQUEUE
Must be set in order to get the prototypes, symbols and datatype definitions necegsary t
the REXX external queues.
* INCL_RXMACRO
Must be set in order to get the prototypes, symbols and datatype definitions necegsary t
the REXX macrospace interface of the API.

8.1.3Data structures and data types

In this section, some data structures and datatypes relevant to the applicati@ceitd®EXX are
defined and described. The datatypes defined are:

* RXSTRING
Holds aREXX string.

* RXSYSEXIT
Holds a definition of a system exit handler. Used when startiR§&X script with
RexxStart(), and when defining the system exit handlers.

The datatypes used in tBAA API are defined imexxsaa.h. They are:

typedef char CHAR ;
typedef short SHORT ;
typedef long LONG ;
typedef char *PSZ ;
typedef CHAR *PCHAR ;

198

typedef SHORT *PSHORT ;
typedef LONG *PLONG ;

typedef unsigned char UCHAR ;
typedef unsigned short USHORT ;
typedef unsigned long ULONG ;
typedef USHORT *PUSHORT ;
typedef char *PCH ;

typedef unsigned char *PUCHAR ;
typedef void VOID;

typedef void *PVOID;

typedef ULONG APIRET;

typedef APIRET (APIENTRY *PFN)();

One other item needs mentionidRIENTRY. This value is used to specify the linkage type on
0OS/2 and Win32 platforms. It is assumed that this vadiefined by inclusion of compiler-specific
header files imexxsaa.h. Under Unix, this igtdefined to nothing.

8.1.3.1The RXSTRING structure

The SAA API interface uséRexx stringvhich are stored in the structtRXSTRING. There is
also a datatypPRXSTRING, which is a pointer tRXSTRING. Their definitions are:

typedef struct {
unsigned char *strptr ; /* Pointer to string contents */
unsigned long strlength ; /* Length of string */

} RXSTRING ;

typedef RXSTRING *PRXSTRING ;

Thestrptr field is a pointer to an array of characters making up the contentsiR&xixestring
while strlength holds the number of characters in that array.

Unfortunately, there are some inconsistencies in naming of various special kinisgst &t
REXX (TRL), a™"null string" is a string that has zero length. On the other hand, the SAA API
operates with two kinds of special stringsil stringsandzero length stringsThe latter is a string
with zero length (equals null stringsREXX), while the former is a sort aindefinedor empty
string, which denotes a string without a value. mtk stringsof SAA API are used to denote
unspecified values (e.g. a parameter left out in a subroutine call). In this chaptethe/kerms
null stringsandzero length stringare italicized, they refer to the SAA API style meaning.

A number of macros are defined, which simplifies operatioRXBTRINGs for the programmer.
In the list below, all parameters calle@dre of typeRXSTRING.

* MAKERXSTRING(x,content,length)]
The parameterontent must be a pointer tchar, while length is integer. The parameter

will be set to the contents and length supplied. The only operations are assignments; no new

space is allocated and the contents of the string is not copied.
* RXNULLSTRING(X)]
Returns true only ik is anull string
l.e. x.strptr is NULL.
* RXSTRLEN(X)]
Returns the length of the strimgas an unsigned long. Zero is returned both whisranull

199

string or azero length string
* RXSTRPTR(X)]
Returns a pointer to the first character in the stxingy NULL if x is anull string. If x is a
zero length stringand nonNULL pointer is returned.
* RXVALIDSTRING(x)]
Returns true only ik is neither aull string nor a zero length string
i.e.x must have non-empty contents.
* RXZEROLENSTRING(X)]
Returns true only ix is azero length string
l.e. x.strptr is nonNULL, and x.strlength is zero.

These definitions are most likely to be defined as preprocessor macros, so you shoudlinever
them withparametershaving any side effects. Also note that at IBBKERXSTRING() is likely

to be implemented as two statements, and might not work properly if following

e.g. anf statement. Check the actual definitions inréwexsaa.h header file before using them in a
fancy context.

One definition of these might be (don't rely on this to be the case with your impleom@ntati

#define MAKERXSTRING(x,c,l) ((x).strptr=(c),(x).strlength=(1))
#define RXNULLSTRING(x) (!(x).strptr)

#define RXSTRLEN(x) ((x).strptr ? (x).strlength : OUL)
#define RXSTRPTR(X) ((x).strptr)

#define RXVALIDSTRING(x) ((x).strptr && (x).strlength)
#define RXZEROLENSTRING(X) ((x).strptr && !(x).strlength)

Note that these definitions of strings differ from the normal definition in C pragnafrere a string
is an array of characters, and its length is implicitly given by a termina&ajl NUL character. In
the RXSTRING definition, a string can contain any character, including an ASCII NUL, and the
length is explicitly given.

8.1.4 The RXSYSEXIT structure

This structure is used for defining which system exit handlers are to handle wdteim gxits. The
two relevant datatypes are defined as:

typedef struct {
unsigned char *sysexit_name ;
short sysexit_code ;

} RXSYSEXIT ;

typedef RXSYSEXIT *PRXSYSEXIT ;
In this structuresysexit_name is a pointer to the ASCII NUL terminated string containing the
name of a previously registered (and currently active) system exit handlesy$éxit_code field
is main function code of a system exit.
The system exits are divided into main functions and sub-functions. An exit is defined ®dand|

main function, and must thus handle all the sub-functions for that main function. All the functions
and sub-functions are listed in the description oBKE&T structure.

200

8.2 The Subcommand Handler Interface

This sections describes the subcommand handler interface, which enables thecapiitap
commands in REXX script being executed and handle this commands itself.

8.2.1What is a Subcommand Handler

A subcommand handler is a piece of code, that is called to handle a command to an external
environment irREXX. It must be either a subroutine in the application that started the interpreter,
or a subroutine in a dynamic link library. In any case, when the interpreter needs te execut
command to an external environment, it will call the subcommand handler, passing thendasma
a parameter.

Typically, an application will set up a subcommand handler before staff@BXX script. That

way, it can trap and handle any command being executed during the course of the script.

Each subcommand handler handles one environment, which is referred to by a name. It seems to be
undefined whether upper and lower case letters differ in the environment name, so you should
assume they differ. Also, there might be an upper limit for the length of an environmentamain

some letters may be illegal as part of an environment name.

Regina allows any letter in the environment name, except ASCIlI NUL; and sets ndimfer
the length of an environment name. However, for compatibility reasons, you should avoid
uncommoretters and keep the length of the name fairly short.

The prototype of a subcommand handler function is:

APIRET APIENTRY handler(
PRXSTRING command,
USHORT flags,
PRXSTRING returnstring

)i

After registration, this function is called whenever the application is to handiecaramand for a
given environment. The value of the parameters are:

[command]
Thecommand string that is to be executed. This is the resulting string after the
command expression has been evaluated iIRE¥X interpreter. It can not be
empty, although it can be zero-length-string

[flags]
Points to arunsigned short which is to receive the status of the completion of the
handler. This can be one of the following: RXSUBCOM_OK,
RXSUBCOM_ERROR, or RXSUBCOM_FAILURE. The contents will be used to
determine whether to raise any condition at return of the subcommand. Do not
confuse it with the return value.

[returnstring]
Points to &RXSTRING which is to receive the return value from the subcommand.
Passing the return value as a string makes it possible to return non-numeric return
codes. As a special case, you mightetirnstring.strptr to NULL, instead of
specifying a return string of the ASCII representation of zero.

201

Note that it is not possible to retunothingin a subcommand, since this is interpreted as zero. Nor
is it possible to return a numeric return code as such; you must convert it to ASGiénegtien
before you return.

Thereturnstring string will provide a 256 byte array which the programmer might use if the return
data is not longer that that. If that space is not sufficient, the handler can provide areshtself.

In that case, the handler should not de-allocate the default area, and the new area shociéddee al
in a standard fashion.

8.2.2The RexxRegisterSubcomExe() function

This function is used to register a subcommand handler with the interface. The subcommand
handler must be a procedure located within the code of the application. After riegisthat

REXX interpreter can execute subcommands by calling the subcommand handler with paramete
describing the subcommand.

The prototype foRexxRegisterSubcomExe() is:

APIRET APIENTRY RexxRegisterSubcomExe(
PSZ EnvName,
PFN EntryPoint,
PUCHAR UserArea

)i

All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the
environment to be registered. This is the same name &EKX interpreter uses
with the ADDRESS clause in order to select an external environment.
[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to
be registered. See the section on Subcommand Handlers for more information.
There is an upper limit for the length of this name.
[UserArea]
Pointer to an 8 byte area of information that is to be associated with this
environment. This pointer can bRJLL if no such area is necessary.

The areas pointed to bgnvName and UserArea are copied to a private area in the interface, so
the programmer may de-allocate or reuse the area used for these pardteetbes @ll has
returned.

RexxRegisterSubcomExe() returns arunsigned long, which carries status information
describing the outcome of the operation. The status will be one BME&/IBCOM values:

[RXSUBCOM_OK]
The subcommand handler was successfully registered.
[RXSUBCOM_DUP]
The subcommand handler was successfully registered. There already exigted anot
subcommand handler which was registered RiglixRegisterSubcomExe(), but
this will be shadowed by the newly registered handler.

202

[RXSUBCOM_NOTREG]
Due to some error, the handler was not registered. Probably because a handler for
EnvName was already defined at a previous calRexxRegisterSubcomExe().
[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory.
[RXSUBCOM_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters
having invalid values.

8.2.3The RexxRegisterSubcomDII() function

This function is used to set up a routine that is located in a module in a dynamic link lipary, a
subcommand handler. After registration, REEXX interpreter can execute subcommands by calling
the subcommand handler with parameters describing the subcommand.

Some operating systems don't have dynamic linking, and thus cannot make use of thisHaeilit
prototype of this function is:

APIRET APIENTRY RexxRegisterSubcomDII(
PSZ EnvName,
PSZ ModuleName,
PFN EntryPoint,
PUCHAR UserArea,
ULONG DropAuth

),

All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the
environment to be registered. This is the same name &EKE interpreter uses
with the ADDRESS clause in order to select an external environment.
[ModuleName]
Points to an ASCII NUL terminated character string which defines the name of the
dynamic or shared library in which the EntryPoint to the subcommand exists.
[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to
be registered. See the section on Subcommand Handlers for more information.
There is an upper limit for the length of this name.
[UserArea]
Pointer to an 8 byte area of information that is to be associated with this
environment. This pointer can bRJLL if no such area is necessary.
[DropAuth]
Is eitherRXSUBCOM_DROPABLE or RXSUBCOM_NONDROP. This
argument is ignored bigegina as subcommands only exists within the current
process.

The areas pointed to bgnvName, ModuleName and UserArea are copied to a private area in
the interface, so the programmer may de-allocate or reuse the area usec fpatheters after
the call has returned.

RexxRegisterSubcomDII() returns arunsigned long, which carries status information describing

203

the outcome of the operation. The status will be one ARXBUBCOM values:

[RXSUBCOM_OK]
The subcommand handler was successfully registered.
[RXSUBCOM_DUP]
The subcommand handler was successfully registered. There already exigted anot
subcommand handler which was registered RetlixRegisterSubcomDIl(), but
this will be shadowed by the newly registered handler.
[RXSUBCOM_NOTREG]
Due to some error, the handler was not registered. Probably because a handler for
EnvName was already defined at a previous caRexxRegisterSubcomDII().
[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory.
[RXSUBCOM_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters
having invalid values.

8.2.4The RexxDeregisterSubcom() function

This function is used to remove a particular environment from the list of registesecinenents.
The prototype of the function is:

APIRET APIENTRY RexxDeregisterSubcom(
PSZ EnvName,
PSZ ModuleName

);

Both parameters are input values:

[EnvName]
Pointer to ASCII NUL terminated string, which represents the name of the
environment to be removed.

[ModuleName]
Also an ASCII NUL terminated string, which points to the name of the module
containing the subcommand handler of the environment to be deleted.

The list of defined environments is searched, and if an environment matching the one named by the
first parameter are found, it is deleted.

The returned value froRexxDeregisterSubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was successfully deleted.
[RXSUBCOM_NOTREG]
The subcommand handler was not found.
[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried
through.

Most systems that do have dynamic linking have no method for reclaiming the space used by

204

dynamically linked routines. So, even if you were able to loditi here are no guarantees that you
will be able to unload it.

8.2.5The RexxQuerySubcom() function

This function retrieves information about a previously registered subcommand handler. The
prototype of the function is:

APIRET APIENTRY RexxQuerySubcom(
PSZ EnvName,
PSZ ModuleName,
PUSHORT Flag,
PUCHAR UserWord

);
The significance of the parameters are:

[EnvName]
Pointer to an ASCIlI NUL terminated character string, which names the subcommand
handler about which information is to be returned.

[ModuleName]
Pointer to an ASCII NUL terminated character string, which names a dynanic li
library. Only the named library will be searched for the subcommand handler named
by EnvName. This parameter must INULL if all subcommand handlers are to be

searched.

[Flag]
Pointer to a short which is to receive the vdR¥SUBCOM_OK or
RXSUBCOM_NOTREG. In fact, this is the same as the return value from the
function.

[UserWord]

Pointer to an area of 8 bytes. Tieerareaof the subcommand handler is copied to
the area pointed to dyserWord. This parameter might B¢ULL if the data of the
userareas not needed.

The returned value frolRexxQuerySubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was found, and the required information has been
returned in thé-lag and UserWord variables.

[RXSUBCOM_NOTREG]
The subcommand handler was not found. Flag variable will also be set to this
value, and th&JserWord variable is not changed.

[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried
through.

205

8.3 The External Function Handler Interface

This sections describes the external function handler interface, which extetatsythege by
enabling external functions to be written in a language otheREXX.

8.3.1What is an External Function Handler

An external function handler is a piece of code, that is called to handle externalrfsractd
subroutine calls iIREXX. It must be either a subroutine in the application that started the
interpreter, or a subroutine in a dynamic link library. In any case, when the inter@edsrto
execute a function registered as an external function, it will call thenekfanction handler,
passing the function name as a parameter.

All external functions written in a language other than REXX must be regisiatte the interpreter
before starting &EXX script.

An external function handler can handle one or more functions. The handler can determine the
function actually called by examining one of the parameters passed to the handlér and ac
accordingly.

The prototype of a subcommand handler function is:

APIRET APIENTRY handler(
PSZ name,
ULONG argc,
PRXSTRING argv,
PSZ queuename,
PRXSTRING returnstring

),

After a function is registered with this function defined as the handler, this funcwafied
whenever the application calls the function. The value of the parameters are:

[name]
The function called.

[argc]
The number of parameters passed to the funciagv will containargc
RXSTRINGS.

[queuename]
The name of the currently define data queue.

[returnstring]
Points to RXSTRING which is to receive the return value from the function.
Passing the return value as a string makes it possible to return non-numeric return
codes. As a special case, you mightsetrnstring.strptr to NULL, instead of
specifying a return string of the ASCII representation of zero.

Thereturnstring string will provide a 256 byte array which the programmer might use if the return
data is not longer that that. If that space is not sufficient, the handler can provide areshtself.

In that case, the handler should not de-allocate the default area, and the new area shociéddee al
in a standard fashion. if the external function does not return a value, it shaefaisestring to

an emptyRXSTRING. This will enable the interpreter to raise error Bdnction did not return

data if the external function is called as a function. If the external function is invokedDAd la

206

command, the interpreter drops the special varlRESULT.

The handler returns zero if the function completed successfully. When the handleraetons
zero value, the interpreter will raise error #alid call to routine

8.3.2The RexxRegisterFunctionExe() function

This function is used to register an external function handler with the interfacextEneal
function handler must be a procedure located within the code of the application. Afteatiegis
the REXX interpreter can execute external functions as if they were built-ins.

The prototype foRexxRegisterFunctionExe() is:

APIRET APIENTRY RexxRegisterFunctionExe(
PSZ FuncName,
PFN EntryPoint

)

All the parameters are input, and their significance are:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name REX interpreter
uses with a function call or via ti@ALL command.

[EntryPoint]
Points to the entrypoint of the external function handler routine for the function to be
registered. See the section on External Function Handlers for more information.

The area pointed to bifuncName is copied to a private area in the interface, so the programmer
may de-allocate or reuse the area used for this parameter after the oetiliveed.

TheRexxRegisterFunctionExe() returns arunsigned long, which carries status information
describing the outcome of the operation. The status will be one BKREINC values:

[RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DUP]
The handler was successfully registered. There already existed anotealext
function handler which was registered wiRbxxRegisterFunctionExe(), but this
will be shadowed by the newly registered handler.

[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

8.3.3The RexxRegisterFunctionDII() function

This function is used to set up an external function handler that is located in a module inia dynam
link library. Some operating systems don't have dynamic linking, and thus cannot make sse of thi
facility. The prototype of this function is:

APIRET APIENTRY RexxRegisterFunctionDII(

PSZ ExternalName,
PSZ LibraryName,

207

PSZ InternalName

)
All the parameters are input, and their significance are:

[ExternalName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name BREX interpreter
uses with a function call or via ti@ALL command.

[LibraryName]
Points to an ASCII NUL terminated character string which defines the name of the
dynamic library. This string may require a directory specification.

[InternalName]
Points to an ASCII NUL terminated character string which defines the name of the
entrypoint within the dynamic library. On systems where the case of function names
in dynamic libraries is relevant, this namest be specified in the same case as the
function name within the dynamic library.

The areas pointed to by all parameters are copied to a private area in thesindertae
programmer may de-allocate or reuse the area used for these paranestére aéill has returned.

TheRexxRegisterFunctionDII() returns arunsigned long, which carries status information
describing the outcome of the operation. The status will be one BKREINC values:

[RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DUP]
The handler was successfully registered. There already existed anotiealext
function handler which was registered wiRbxxRegisterFunctionDII(), but this
will be shadowed by the newly registered handler.

[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

8.3.4The RexxDeregisterFunction() function

This function is used to remove a particular external function handler from the kgfisiered
external function handlers. The prototype of the function is:

APIRET APIENTRY RexxDeregisterFunction(
PSZ FuncName

)
The parameter is an input value:
[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the

external function to be registered. This is the same name RENX interpreter
uses with a function call or via tl@ALL command.

The list of defined function handlers is searched, and if an environment matching the one named by
the parameter are found, it is deleted. This call is used to de-register functicerhaegiktered

208

with eitherRexxRegisterFunctionExe() or RexxRegisterFunctionDII().
The returned value froRexxDeregisterFunction() can be one of:

[RXFUNC_OK]

The handler was successfully deleted.
[RXFUNC_NOTREG]

The handler was not found.

Most systems that do have dynamic linking have no method for reclaiming the space used by
dynamically linked routines. So, even if you were able to loditi here are no guarantees that you
will be able to unload it.

8.3.5The RexxQueryFunction() function
This function retrieves the status of an external function handler. The prototype of tienfimc

APIRET APIENTRY RexxQueryFunction(
PSZ FuncName

)i

The significance of the parameters is:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name RENX interpreter
uses with a function call or via ti@ALL command.

The returned value frolRexxQueryFunction() can be one of:
[RXFUNC_OK]
The external function handler was found.

[RXFUNC_NOTREG]
The handler was not found.

209

8.4 Executing REXX Code

This sections describes tRexxStart() function, which allows the application to startup the
interpreter and make it interpret piecefR&XX code.

8.4.1The RexxStart() function

This function is used to invoke tREXX interpreter in order to execute a piec&k@&XX code,
which may be located on disk, as a pre-tokenized macro, or as ASCII source code in memory.

APIRET APIENTRY RexxStart(
LONG ArgCount,
PRXSTRING ArgList,

PSZ ProgramName,
PRXSTRING Instore,
PSZ EnvName,

LONG CallType,
PRXSYSEXIT Exits,
PUSHORT ReturnCode,
PRXSTRING Result

),

Of these parameterReturnCode andResult are output-only, whilénstore is both input and
output. The rest of the parameters are input-only. The significance of the pasaaneter

[ArgCount]
The number of parameter strings given to the procedure. This is the number of
definedREXX-strings pointed to by th&rgList parameter. The default maximum
number of arguments that can be passed is 32, but this can be changed by the
MAX_ARGS TO_REXXSTART macro in rexx.h.

[ArgList]
Pointer to an array d®REXX-strings, constituting the parameters to this call to
REXX. The size of this array is given by the paramatgCount. If ArgCount is
greater than one, the first and last parameterargiast[0] andArgList[ArgCount-
1]. If ArgCount is O, the value oArgList is irrelevant.

If the strptr of one of the elements in the array pointed té\myList is NULL, that
means that this parameter is empty (i.e. unspecified, as opposed to a string of zero
size).

[ProgName]
An ASCII NUL terminated string, specifying the name of REeXX script to be
executed. The value tristore will determine whether this value is interpreted as the
name of a (on-disk) script, or a pre-tokenized macro. If it refers to a flename, the
syntax of the contents of this parameter depends on the operating system.

[Instore]
Parameter used for storing tokeniZEXX scripts. This parameter might either be
NULL, else it will be a pointer to tW8XSTRING structures, the first holding the
ASCII version of REXX program, the other holding the tokenized version of that
program. See below for more information about how tdnsere.

[EnvName]
Pointer to ASCII NUL terminated string naming the environment which is to be the

210

initial current environment when the script is started. If this parametérts se
NULL, the filetype is used as the initial environment name. What the filetype is, may
depend on your operating system, but in general it is everything after the last period
""in the filename.

[CallType]
A value describing whether tiRREXX interpreter is to be invoked in command,
function or subroutine mode. Actually, this has little significance. The main
difference is that in command mode, only one parameter string can be passed, and in
function mode, a value must be returned. In addition, the mode chosen will affect
the output of th€ ARSE SOURCE instruction inREXX.

Three symbolic values of integral type are defined, which can be used for this
parameterRXCOMMAND, RXFUNCTION andRXSUBROUTINE.
A value ofRXRESTRICTED can be OR'ed with one of the above types to specify
thatRegina will run in restrictedmode. This is particularly useful wh&egina is
used as an embedded interpreter in applications such as a database procedural
language or a web-browser scripting language.

[SysExists]
A pointer to an array of exit handlers to be used. If no exit handlers are to be
defined,NULL may be specified. Each element in the array defines one exit handler,
and the element immediately following the last definition must have a
sysexit_code set toRXENDLST.

[ReturnCode]
Pointer to &SHORT integer where the return code is stored, provided that the
returned value is numeric, and within the range -(2**15) to 2**15-1. | don't know
what happens tReturnCode if either of these conditions is not satisfied. It
probably becomes undefined, which means that it is totally useless since the program
has to inspect the return string in order to determine whBgeirnCode is valid.
Regina allows the value of this parameter to be NULL if the user is not interested in
it.

[Result]
Points to &REXX string into which the result string is written. The caller may or
may not let thestrptr field be supplied. If supplied (i.e. it is non-NULL), that area
will be used, else a new area will be allocated. If the supplied area is usem i$s Si
supposed to be given by teelength field. If the size if not sufficient, a new area
will be allocated, byrexxAllocateMemory(), and the caller must see to that it is
properly de-allocated usinBexxFreeMemory().
Regina allows the value of this parameter to be NULL if the user is not interested in
it.

Note that theArgCount parameter need not be the same aé&\R@&() built-in function would
return. Differences will occur if the last entriesArgList arenull strings

Thelnstore parameter needs some special attention. It is used to directly or indirectfy speere
to fetch the code to execute. The followalgorithmis used to determine what to execute:

If Instore isNULL, thenProgName names the filename of an on-dREXX script which
it to be read and executed.

Else, ifinstore is notNULL, the script is somewhere in memory, and no reading from disk
is performed. If bothnistore[0].strptr andinstore[1].strptr areNULL, then the script to

211

execute is a pre-loaded macro which must have been loaded with a call to either
RexxAddMacro() or RexxLoadMacroSpace(); andProgName is the name of the macro
to execute.

Else, ifinstore[1].strptr is nonNULL, theninstore[1] contains the pre-tokenized image of
aREXX script, and it is used for the execution.

Else, if Instore[0].strptr is nonNULL, theninstore[0]} contains the ASCII image of a
REXX script, just as if the script had been read directly from the disk (i.e. including
linefeeds and such). This image is passed to the interpreter, which tokenizes dresd st
the tokenized script in tHastore[1] string, and then proceeds to execute that script. Upon
return, thanstore[1] will be set, and can later be used to re-execute the script within the
same process, without the overhead of tokenizing.

The user is responsible for de-allocating any storage uskestoye[1]. Note that after
tokenizing, the source codelimstore[0] is strictly speaking not needed anymore. It will
only be consulted if the user calls ®®URCELINE() built-in function. It is not an error to
useSOURCELINE() if the source is not present, but nullstrings and zero will be returned.

To tokenise &EXX script and save it for execution by a later executioRdxxStart()
either in the currently running process or outside the current process, you need to call
RexxStart() with the following arguments:

Parameter Value Notes

ArgCount 1

ArgList.strlength 3

ArgList.strptr T

ProgName Ignored

Instore[O].strptr ASCIl image of Rexx script

Instrore[0].strlength Length of Instore[0].strptr

Instrore[1].strptr Ignored This will be populated with the
tokenised code.

Instore[1].strlength Ignored This will be set to the length of
Instore[1].strptr

EnvName SYSTEM

CallType RXCOMMAND

SysEXxits NULL

ReturnCode Ignored

Result.strptr Ignored

Result.strlength Ignored

212

The valid return values frofRexxStart() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can
expect the error value to have the same absolute value REX)¥ syntax error (but
opposite signs, of course).

[Zero]
indicates that the interpreter finished executing the script without errors.

[Positive]
indicates probably that some problem occurred, that made it impossible to execute
the script, e.g. a bad parameter value. However, | can't find any references in the
documentation which states which values it is supposed to return.

During the course of an execution BexxStart(), subcommand handlers and exit handlers might
be called. These may call any function in the application interface, including amstheation of
RexxStart().

Often, the application programmer is interested in providing support simplifyingecdisation of
filenames, like an environment variable search path or a default file typ&EDX¢ interface does
support a default file type.CMD, but the user may not set this to anything else. Therefore, it is
generally up to the application programmer to handle search paths, and also defgpédile
(unlessCMD is OK).

If the initial environment namd=¢nName) is NULL, then the initial environment during
interpretation will be set equal to the file type of the script to execute. IEtipe does not have a
file

type, it is probably set to some interpreter specific value.

213

8.5 Variable Pool Interface

This section describes the variable pool part of the application interface, whiek Hie
application programmer to set, retrieve and drop variables REXe interpreter from the
application program. It also allows access to other information.

The C preprocessor symddlCL_RXSHV must be defined if the definitions for the variable pool
interface are to be made available whexxsaa.h is included.

8.5.1Symbolic or Direct

First, let us define two termsymbolicvariable name andirect variable name, which are used in
connection with the variable pool.

A symbolic variable name is the name of a variable, but it needs normalization authsétiution
before it names the real variable. The n&owebar is a symbolic variable name, and it is
transformed by normalization, EDO.BAR, and then by tail substitution E00.42 (assuming
that the current value dBAR is 42).

Normalization is the process of uppercasing all characters in the symbolicaraitail
substitution is the process of substituting each distinct simple symbol in ther itslfalue.

On the other hand, a direct variable refers directly to the name of the variablen$e aitsis a
symbolic variable that has already been normalized and tail substituted. Foraristauar is not

a valid direct variable name, since lower case letters are not allowed initii#evratem. The direct
variableFOO.42 is the same as the variable above. For simple variables, the only difference
between direct and symbolic variable names is that lower case lettellsvaesl an symbolic names

Note that the two direct variable nantfé80.bar andFOO.BAR refer to different variables, since
upper and lower case letters differ in the tail. In fact, the tail of a compound dinetieanay
contain any character, including ASCII NUL. The stem part of a variable, and plesmriables
can not contain any lower case letters.

As a remark, what would the direct variabl@O. refer to: the sterROO. or the compound
variable having sterROO. and a nullstring as tail? Well, | suppose the former, since it is the more
useful. Thus, the latter is inaccessible as a direct variable.

8.5.2The SHVBLOCK structure

All requests to manipulate tiREXX variable pool are controlled by a structure which is called
SHVBLOCK, having the definition:

typedef struct shvnode {
struct shvnode *shvnext; /* ptr to next in blk in chain */
RXSTRING shvhame ; /* name of variable */
RXSTRING shvvalue ; * value of variable */
ULONG shvnamelen ; /*length of shvname.strptr */
ULONG shvvaluelen ; /* length of shvvalue.strptr */
UCHAR shvcode ; /* operation code */
UCHAR shvret ; [* return code */

} SHVBLOCK ;

214

typedef SHVBLOCK *PSHVBLOCK ;

The fieldsshvnext andshvcode are purely input, whilshvret is purely output. The rest of the
fields might be input or output, depending on the requested operation, and the value of the fields.
The significance of each field is:

[shvnext]
One call toRexxVariablePool() may sequentially process many requests. The
shvnext field links one request to the next in line. The last request must have set
shvnext to NULL. The requests are handled individually and thus, calling
RexxVariablePool() with several requests is equivalent to making one call to
RexxVariablePool() for each request.

[shvname]
Contains the name of the variable to operate on,RX&TRING. This field is only
relevant for some requests, and its use may differ.

[shvvalue]
Contains the value of the variable to operate onRESTRING. Like shvhame,
this might not be relevant for all types of requests.

[shvhamelen]
The length of the array thahvname.strptr points to. This field holds the
maximum possible number of characterssiivname.strptr. While
shvname.strlength holds the number of characters that are actually in use (i.e.
defined).

[shvvaluelen]
The length of the array thahvvalue.strptr points to. Relates &hvvalue, like
shvnamelen relates teshvname.

[shvcode]
The code of operation; decides what type of request to perform. A list of all the
available requests is given below.

[shvret]
A return code describing the outcome of the request. This code is a bit special. The
lower seven bits are flags which are set depending on whether some condition is met
or not. Values above 127 are not used in this field.

There is a difference betweshvnamelen and shvname.strlength. The former is the total length

of the array of characters pointed toghywname.strptr (if set). While the latter is the number of

these characters that are actually in use. WIgH\EBLOCK is used to return data from
RexxVariablePool(), and a pre-allocated string space has been supplied, both these will be used;
shvname.strlength will be set to the length of the data returned, wéiitenamelen is never

changed, only read to find the maximum number of charactershitiaame can hold.

Even thougtshvnamelen is not really needed whesnvname is used for input, it is wise to set it
to its proper value (or at least set it to the sanmshasame.strlength). The same applies for
shvvalue andshvvaluelen.

The fieldshvcode can take one of the following symbolic values:
[RXSHV_DROPV]
The variable named by the direct variable naimename is dropped (i.e. becomes

undefined). The fieldshvvalue andshvvaluelen do not matter.
[RXSHV_EXIT]

215

This is used to set the return value for an external function or exit handler.
[RXSHV_FETCH]
The value of the variable named by the direct variable rlavigame is retrieved
and stored ishvvalue. If shvvalue.strptr is NULL, the interpreter will allocate
sufficient space to store the value (but it is the responsibility of the application
programmer to release that space). Else, the value will be stored in théomagadl
for shvvalue, and shvvaluelen is taken to be the maximum size of that area.
[RXSHV_NEXTV]
This code is used to retrieve the names and values of all variables at the current
procedure level; i.e. excluding variables shadoweBR@QCEDURE. The name
and value of each variable are retrieved
simultaneously intehvname and shvvalue, respectively.
Successive requests RXSHV_NEXTV will traverse the interpreter's internal data
structure for storing variables, and return a new pair of variable name and value for
each request. Each variable that is visible in the current scope, is returned once and
only once, but the order is non-deterministic.
When all available variables in tiREXX interpreter have already been retrieved,
subsequem®XSHV_NEXTV requests will set the flagXSHV_LVAR in the
shvret field. There are a few restrictions. The traversal will be reset wheinever t
interpreter resumes execution, so an incomplete traversal can not be continued in a
later external function, exit handler, or subcommand handler. Also, any set, fetch or
drop operation will reset the traversal. These restrictions have been added to ensure
that the variable pool is static throughout one traversal.
[RXSHV_PRIV]
Retrieves some piece of information from the interpreter, other than a varialge val
based on the value of tkavname field. The value is stored shvvalue as for a
normalfetch. A list of possible names is shown below.
[RXSHV_SET]
The variable named by the direct variable nafmename is set to the value given
by shvvalue.
[RXSHV_SYFET]
Like RXSHV_FETCH, except thashvname is a symbolic variable name.
[RXSHV_SYDRO]
Like RXSHV_DROPV, except thashvname is a symbolic variable name.
[RXSHV_SYSET]
Like RXSHV_SET, except thatshvname is a symbolic variable name.

One type of request that needs some special attentionRX®idV_PRIV, which retrieves a kind
of meta-variable Depending on the value ghvname, it returns a value ishvvalue describing
some aspect of the interpreter. FRKSHV_PRIV the possible values fahvname are:

[PARM]
Returns the ASCII representation of the number of parameters to the curremdly act
REXX procedure. This may not be the same value as the built-in fun&tRgsy)
returns, but is the numbekrgCount in RexxStart(). The two might differ if a
routine was called with trailing omitted parameters.

[PARM.nN]
The n must be a positive integer; and the value returned will be'tihgarameter at
the current procedure level. This is not completely equivalent to the information
that the built-in functioRG() returns. For parameters whetdkG() would
return the state omitted, the returned valuenslbstring, while for parameters

216

whereARG() would return the statexisting the return value will be the parameter
string (which may be aero length string
[QUENAME]
The name of the currently active external data queue. This feature has not yet been
implemented irRegina, which always returdefault
[SOURCE]
Returns the same string that is used iRRA&SE SOURCE clause irREXX, at
the current procedure level of interpretation.
[VERSION]
Returns the same string that is used iINRA&SE VERSION clause irREXX.

The value returned by a variable pool request is a bit uncommon. A return value is computed for
each request, and stored in sieret field. This is a one-byte field, of which the most significant
bit is never set. A symbolic vallRXSHV_OK is defined as the value zero, and sheret field

will be equal to this name if none if the flags listed below is set. The symbolicfealirese flags
are:

[RXSHV_BADF]
Theshvcode of this request contained a bad function code.

[RXSHV_BADN]
Theshvname field contained a string that is not valid in this context. What exactly
is a valid value depends on whether the operation is a private, a symbolic variable, or
direct variable operation.

[RXSHV_LVAR]
Set if and only if the request WBXSHV_NETXV, and all available variables have
already been retrieved by earlier requests.

[RXSHV_MEMFL]
There was not enough memory to complete this request.

[RXSHV_NEWV]
Set if and only if the referenced variable did not previously have a value. It can be
returned for any set, fetch or drop operation.

[RXSHV_TRUNC]
Set if the retrieved value was truncated when it was copied into eithg@nthame
or shvvalue fields. See below.

These flags are directly suitable for logical OR, without shifting, e.g. tdkdbetruncation and no
variables left, you can do something like:

if (reg->shvret & (RXSHV_TRUNC | RXSHV_LVAR))
printf("Truncation or no vars left\n") ;

RXSHV_TRUNC can only occur when the interface is storing a retrieved valuSkivaBLOCK,
and the pre-allocated space is present, but not sufficiently large. As descriBbte¥ _FETCH,
the interpreter will allocate enough spacghfvalue.strptr is NULL, and therRXSHV_TRUNC
will never be set. Else the space suppliedshyvalue.strptr is used, andshvvaluelen is taken as
the maximum length adhvvalue, and truncation will occur if the supplied space is too small.

Some implementations will consid8HV_MEMFL to be so severe as to skip the rest of the
operations in a chain of requests. In order to write compatible software, you should newer ass
that requests

following in a chain after a request that retur¢t/_MEMFL have been performed.

217

RXSHV_BADN is returned if the supplieshvname contains a value that is not legal in this
context. For the symbolic set, fetch and drop operations, that means a symbol thalisaaibdge
name; both upper and lower case letters are allowed. For the direct set, fetch and dtmmeper
that means a variable name after normalization and tail substitution is nolt\zalégfale name. For
RXSHV_PRIV, it must be one of the values listed above.

There is a small subtlety in the above description. TRL states that viriEX>& assignment assigns

a value to a stem variable, all possible variables having that stem are assignedadue

(independent of whether they had an explicit value before). So, strictly speakingnif & sket,

then aRXSHV_NETV sequence should return an (almost) infinite sequence of compound variables
for that stem. Of course, that is completely useless, so you can assume that only comphlad va

of that stem given an explicit value after the stem was assigned a value nstllitreed by
RXSHV_NEXTV. However, because of that subtlety, the variables returnB&kByHV_NEXTV

for compound variables might not be representative for the state of the variables.

e.g. what would a sequenceRXSHV_NEXT requests return after the followilREEXX code ?:
foo. = 'bar’
drop foo.bar

The second statement here, might not change the returned values! After thetdinsest, only the
stem foo. would probably have been returned, and so also if all variables were fetched after the
second statement.

8.5.3Regina Notes for the Variable Pool

Due to the subtleties described at the end of the previous subsection, some noteRegihaw
handleRXSHV_NEXTYV requests for compound variables are in order. The following rules
applies:

¢ Both the stem variableOO. and the compound variable havik@O. as stem and a nullstring
as tail, are returned with the namef®DO.. In this situation, a sequence BXSHV_NEXTV
requests may seem to return values for the same variable twice. This is urdptiuhédtseems
to be the only way. In any case, you'll have to perforniRtk6HV_SYFET in order to
determine which is which.

» If a stem variable has not been assigned a value, its compound variables are only feheyed i
have been assigned an explicit value. i.e. compound variables for that stem that have either
never been assigned a value, or have been dropped, will not be reported by RXSHV_NEXTV.
There is nothing strange about this.

» If a stem variable has been assigned a value, then its compound variables will bd neporte
two cases: Firstly, the compound variables having explicitly been assigned aftealuard.
Secondly, the compound variables which have been dropped afterward, which are reported to
have their initial value, and the flI&KSHV_NEWYV is set inshvret.

It may sound a bit stupid that unset variables are listed when the request is ltodisalles which
have been set, but that is about the best | can do, if | am to stay within the standard defuhition a
return a complete and exact status of the variable pool.

If the return code frorRexxVariablePool() is less than 12&egina is guaranteed to have tried to

process all requests in the chain. If the return code is above 127, some requests may nat have bee
processed. Actually, the number 127 (or 128) is a bit inconvenient, since it will be an problem for

218

later expansion of the standard. A much better approach would be to have a preprocessor symbol
(say,

RXSHV_FATAL, and if the return code from tiRexxVariablePool() function was larger than

that, it would be d@irecterror code, and not@mpositeerror code built from thshvret fields of

the requests. THRXSHV_FATAL would then have to be the addition of all the atomic composite
error codes.

(Warning: author mounting the soapbox.)
The right way to fix this, is to let the functiorRexxVariablePool() set another flag in
shvret (e.g. namedRXSHV_STEM) during RXSHV_NEXTV if and only if the value
returned is a stem variable. That way, the application programmer would bdaabiffer
between stem variables and compound variable with a null string tail.

To handle the other problem with compound variables RK&HV_NEXTV, | would have

liked to return anull string in shvvalue if and only if the variable is a compound variable
having its initial value, and the stem of that compound variable has been assignke.a va
Then, the value of the compound variable is equal to its name, and is available in the
shvname field.

I'd also like to see that theshvret value contained other information concerning the
variables, e.g. whether the variable was exposed at the current procedurélegelrse,
Regina does not contain any of these extra, non-standard features.

(Author isdismounting the soapbox.)

WhenRegina is returning variables witRXSHV_NEXTV, the variables are returned in the order
in which they occur in the open hash table in the interpreter. i.e. the order in which variables
belonging to different bins are returned is consistent, but the order in which variabied teathe
same bin are returned, is non-deterministic. Note that all compound variables belorigengame
stem are returned in one sequence.

8.5.4The RexxVariablePool() function

This function is used to process a sequence of variable requests, and process thenllgedhentia
prototype of this function is:

APIRET APIENTRY ULONG RexxVariablePool(
SHVBLOCK *Request

);

Its only parameter is a pointer t&&VBLOCK structure, which may be the first of the linked list.
The function performs the operation specified in each block. If an error should occur, the current
request is terminated, and the function moves on to the next request in the chain.

The result value is a bit peculiar. If the returned value is less than 128, it istealdaydogically
OR'ing the returnedhvret field of all the requests in the chain. That way, you can easily check
whether any of the requests was e.g. skipped because of lack of memory. To determine which
request, you have to iterate through the list.

If the result value is higher than 127, it signifies an error. If any of these valusst,ayeu can not

assume that any of the requests have been processed. The following symbolic nartge gives i
meaning.

219

[RXSHV_NOAVL]
Means that the interface is not available for this request. This might occur if the

interface was not able to start the interpreter, or if an operation requesteabéevari
when the interpreter is not currently executing any script (i.e. idle and waitiag f
script to execute).

220

8.6 The System Exit Handler Interface

The exit handlers provide a mechanism for governing important aspectsREX)einterpreter
from the application: It can trap situations like the interpreter writing otitder then handle them
itself, e.g. by displaying the text in a special window. You can regard systenagxtsort of
hooks

8.6.1The System Exit Handler

Just like the subcommand handler, the system exit handler is a routine supplied by thgapplic
and is called by the interpreter when certain situations occur. These situaides@ibed in detail
later. For the examples below, we will use the output & as an example.

If a system exit handler is enabled for 8&Y instruction, it will be called with a parameter
describing the text that is to be written out. The system exit handler can choose éalmand|
situation (e.g. by writing the text itself), or it can ignore it and let the irggrpperform the output.
The return code from the system exit tells the interpreter whether a sypatdmndled the situation
or not.

A system exit handler must be a routine defined according to the prototype:

LONG APIENTRY my_exit_handler(
LONG ExitNumber,
LONG Subfunction,
PEXIT ParmBlock

)i

In this prototype, the typREXIT is a pointer to a parameter block containing all the parameters
necessary to handle the situation. The actual definition of this parameter blockrwitnd is
described in detail in the list of each system exit.

The exits are defined in a two-level hierarchy. BxéNumber defines the main function for a
system exit, while th8ubfunction defines the subfunction within that main function. e.g. for
SAY, the main function will b&XSIO (the system exit for standard I/O) and the subfunction will
be RXSIOSAY. TheRXSIO main function has other sub-functions for handling trace output,
interactive trace input, arflULL input from standard input.

The value returned from the system exit handler must be one of the following symhadis: val

[RXEXIT_HANDLED]
Signals that the system exit handler took care of the situation, and that the tetterpre
should not proceed to do the default action. For3¢ instruction, this means
that the interpreter will not print out anything.

[RXEXIT_NOT_HANDLED]
Signals that the system exit handler did not take care of the situation, and the
interpreter will proceed to perform the default action. FOISIA¥ instruction, this
means that it must print out the argumerb£0y.

[RXEXIT_RAISE_ERROR]
Signals that the interpreter's default action for this situation should not be peEtform
but instead &YNTAX condition should be raised. Don't get confused by the name,
it is not theERROR condition, but th&YNTAX condition is raised, using the
syntax errofFailure in system servidg@ormally numbered 48).

221

In addition to returning information as the numeric return value, information may alsimibrede
by setting variables in the parameter block. For instance, if the systemtexitaisdle interactive
trace input, that is how it will supply the interpreter with the input string.

It is a good and disciplined practice to let your exit handlers start by verifyirkgxitNumber and
Subfunction codes, and immediately retlRXEXIT_NOT_HANDLED if it does not recognize
both of them. That way, your application will be upwards compatible with future integovetech
might have more sub-functions for any given main function.

8.6.2List of System Exit Handlers

8.6.2.1.1RXFNC - The External Function Exit Handler

TheRXFNC system exit handler provides hooks for external functions. It has only one
subfunctionRXFNCCAL, which allows an application program to intervene and handle any
external function or subroutine.

Do not confuse this exit handler with the external function routines which allow you to define
REXX, semi-built-in functions. The exit handler is called for all invocations of extesothes,
and can be called for function names which you were unaware of.

The parametdParmBlock for RXFNCCAL is defined as:

typedef struct {
typedef struct {
unsigned int rxfferr:1 ;
unsigned int rxffnfnd1 ;
unsigned int rxffsub: 1;
} rxfnc_flags ;
unsigned char *rxfnc_address ;
unsigned short rxfnc_addressl ;
unsigned char *rxfnc_que ;
unsigned short rxfnc_quel ;
unsigned short rxfnc_argc;
RXSTRING *rxfnc_argyv ;
RXSTRING rxfnc_retc ;
} RXFNCCAL_PARM ;

The significance of each variable is:

[rxfnc_flags.rxfferr]
Is an output parameter that is set on return in order to inform the interpreter that the
function or subroutine was incorrectly called, and thusSthRTAX condition
should be raised.

[rxfnc_flags.rxffnfnd]
Is an output parameter that tells the interpreter that the function was not found. Note
the inconsistency: it is only effective if the exit handler returns
RXEXIT_HANDLED, which looks like a logic contradiction to setting the not-found
flag.

[rxfnc_flags.rxffsub]
Is an input parameter that tells the exit handler whether it was called fortiaruorc
subroutine call. If set, the call being handled is a subroutine call and returning a

222

value is optional; else it was called for a function, and must return a value in
rxfnc_retc if RXEXIT_HANDLED is to be returned.

[rxfnc_name]
Is a pointer to the name of the function or subroutine to be handled, stored as a
character array. This is an input parameter, and its length is given by the
rxfnc_namel parameter.

[rxfnc_namel]
Holds the length afxfnc_name. Note that the last character is the le¢i&érnot the
number one.

[rxfnc_que]
Points to a character array holding the name of the currently active queue. This is an
input parameter. The length of this name is given byxtme quel field.

[rxfnc_quel]
Holds the length ofxfnc_que. Note that the last character is the legigrnot the
number one.

[rxfnc_argc]
Is the number of arguments passed to the function or subroutine. It defines the size
of the array pointed to by thefnc_argv field.

[rxfnc_argv]
Points to an array holding the parameters for the routines. The size of this array is
given by thexfnc_argc field. If rxfnc_argc is zero, the value akfnc_argv is
undefined.

[rxfnc_retc]
Holds anRXSTRING structure suitable for storing the return value of the handler.
It is the responsibility of the handler to allocate space for the contents ofitings str
(i.e. the array pointed to by tihefnc_retc.strptr).

8.6.2.2RXCMD - The Subcommand Exit Handler

The main function code for this exit handler is given by the symbolic R6GMD. It is called
whenever the interpreter is about to call a subcommand, i.e. a command to an external environm
It has only one subfunctioRXCMDHST.

TheParmBlock parameter for this subfunction has the following definition:

typedef struct {
typedef struct {
unsigned int rxfcfail:1 ;
unsigned int rxfcerr:1 ;
} rxemd_flags ;
unsigned char *rxcmd_address ;
unsigned short rxcemd_addressl ;
unsigned char *rxcemd_dll ;
unsigned short rxcmd_dll_len ;
RXSTRING rxemd_command ;
RXSTRING rxcmd_retc ;
} RXCMDHST_PARM ;

The significance of each variable is:
[rxemd_flags.rxfcfail]
If this flag is set, the interpreter will raisd=AlILURE condition at the return of the
exit handler.

223

[rxemd_flags.rxfcerr]
Like the previous, but the ERROR condition is raised instead.

[rxemd_address]
Points to a character array containing the name of the environment to which the
command normally would be sent.

[rxemd_addressl]
Holds the length ofxcmd_address. Note that the last character is the letigrnot
the number one.

[rxemd_dll]
Defines the name for the DLL which is to handle the command. I'm not sure what
this entry is used for. It is not currently in use R&gina.

[rxemd_dll_len]
Holds the length afxcmd_dll. If this length is set to zero, the subcommand handler
for this environment is not a DLL, but an EXE handler.

[rxemd_command]
Holds the command string to be executed, including command name and
parameters.

[rxemd_retc]
Set by the exit handler to the string which is to be considered the return code from
the command. It is assigned to the special varidllat return from the exit
handler. The user is responsible for allocating space for this variable. | have no
clear idea what happens¥cmd_retc.strptr is set to NULL; it might séRC to
zero, to the null string, or even drop it.

It seems that this exit handler is capable of raising botBROR and the FAILURE conditions
simultaneously. | don't know whether that is legal, or whether onlyAlleURE condition is
raised, since thERROR condition is a sort obubsetof FAILURE.

Note that the return fields of the parameter block are only relevant if the value
RXEXIT_HANDLED was returned. This applies to tkemd_flags and rxcmd_retc fields of the
structure.

8.6.2.3RXMSQ - The External Data Queue Exit Handler

The external data queue exit handler is used as a hook for operations manipulatingribkbdatte
queue (or the stack). Unfortunately, the stack is a borderline case of what is reléhaREXX

SAA API. Operations like putting something on, retrieving a string from, obtaining the sizaf, etc
the stack is not part of tIiRAA API.

However, some of this functionality is seemingly here; but not all. For instant¢efor t

RXMSQPLL subfunctionSAA API is called by the interpreter before the interpreter calls whatever
system-specific call is available for retrieving a string from theksta

Thus theSAA API can be used by an application to provide the interpreter with a fake stack, but it
IS not a suitable means for the application itself to manipulate#hstack.

TheRXMSG exit has four subfunctions:

[RXMSQPLL]
This is called before a line is retrieved from the stack and the applicationselay it
provide the interpreter with an alternative line. On entry, the third parameter points
to a structure having the following definition:

typedef struct {
RXSTRING rxmsq_retc;

224

} RXMSQPLL_PARM:

Therxmsq_retc field holds the string to be retrieved from the stack. Note that it is
an output parameter, so its value on entry is undefined.

[RXMSQPSH]
This is called before the interpreter puts a line on the stack, and it may grab the line
itself, and thus prevent the interpreter from putting the line on the stack. Note that
this exit handles both pushing and queuing. The third parameter is:

typedef struct {
struct {
unsigned rxfmlifo: 1;
} rxmsq_flags;
RXSTRING rxmsqg_value;
} RXMSQPSH_PARM,;

Here the fieldxmsq_value holds the string to be put on the stack. Whether the
string is to be pushed or queued is determined by the boolean value
rxmsq_flags.rxmlfifo, which isTRUE if the string is to be pushed.
All values are input values. What happens if you change them is not defined in the
SAA APIl. Some implementations may let you modify the contentsne$q_value
and returrRXEXIT_NOT_HANDLED and the string push by the interpreter
contains the modified string. However, you should not rely on this since it is highly
incompatible. You may not de-allocatensq_value.

[RXMSQSIZ]
this is called before the interpreter tries to determine the size of the atadt may
present an alternative size to the interpreter. The third parameter is:

typedef struct {
ULONG rxmsq_size;
} RXMSQSIZ_PARM;

The fieldrxmsq_size can be set to the number the application wantQtheUED
() function to return. Note that this parameter is undefined on entry, so it cannot be
used to retrieve the number of lines on the stack.

[RXSQNAM]
This is called before the interpreter tries to retrieve the name of the ctaektand
it may present the interpreter with an alternative name. Note that this fufitticna
part of SAA but notTRL,; it supports thé&et option of theRXQUEUE() built-in
function. Note that there are no other exits supporting the other options of
RXQUEUE(). The third parameter for this exit is:

typedef struct {
RXSTRING rxmsg_name;
} RXMSQNAM_PARM,;

As with RXSQMSIZ, the fieldrxmsg_name can be set to the name which the
application wants to return to the interpreter as the name of the current stack. Note
that this is an output-only parameter; its value on input is undefined, and in particular
IS not the name of the real stack.

225

Note that this area is troublesome.TRL, external data queues are not defined as part of the
language, while iAA itis. Thus,TRL-compliant interpreters are likely to implement stacks in
various ways that may not be compatible with $iAeA.

8.6.2.4RXSIO - The Standard /0O Exit Handler

The main code for this exit handler has the symbolic VAKISIO. There are four sub-functions:

[RXSIODTR]
Called whenever the interpreter needs to read a line from the user during weeracti
tracing. Note the difference between this subfunction RXSIOTRD.

[RXSIOSAY]
Called whenever the interpreter tries to write something to standard outp@®AN a
instruction, even 8AY instruction without a parameter.

[RXSIOTRC]
Called whenever the interpreter tries to write out debugging information, e.g. during
tracing, as a trace back, or as a syntax error message.

[RXSIOTRD]
Called whenever the interpreter need to read from the standard input stream during a
PULL or PARSE PULL instruction. Note that it will not be called if there is
sufficient data on the stack to satisfy the operation.

Note that these function are only called for the exact situations that adealistee. e.g. the
RXSIOSAY is not called during a call to thRREXX built-in functionLINEOUT() that writes to the
default output streanT.RL says thaBAY is identical to calling.INEOUT() for the standard output
stream, but SAA API still manages to see the difference between stetslesasad compound
variables with a Zero-length-stringtail. Please bear with this inconsistency.

Depending on the subfunction, tRarmBlock parameter will have four only slightly different
definitions. It is kind of frustrating that tigarmBlock takes so many different datatypes, but it can
be handled easily usinmions, see a later section. The definitions are:

typedef struct {
RXSTRING rxsiodtr_retc ; /* the interactive trace input */
} RXSIODTR_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the SAY line to write out */
} RXSIOSAY_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the debug line to write out */
} RXSIOTRC_PARM ;

typedef struct {
RXSTRING rxsiotrd_retc ; /* the line to read in */
} RXSIOTRD_PARM ;

In all of these, th&XSTRING structure either holds the value to be written out REEIOSAY
andRXSIOTRC), or the value to be used instead of reading standard input stream (for
RXSIOTRD andRXSIODTR). Note that the values set BXSIOTRD andRXSIODTR are
ignored if the exit handler does not return the v&X&EXIT HANDLED.

226

Any end-of-line marker are stripped off the strings in this context. If the exitdrandtes out the
string duringRXSIOSAY or RXSIOTRC, it must supply any end-of-line action itself. Similarly,
the interpreter does not expect a end-of-line marker in the data returne@XSIODTR and
RXSIOTRD.

The space used to store the return data fORK®IODTR andRXSIOTRD sub-functions, must be
provided by the exit handler itself, and the space is not de-allocated by the intefretgpace

can be reused by the application at any later time. The space allocated to hold theddtathe
RXSIOSAY andRXSIOTRC sub-functions, will be allocated by the interpreter, and must neither
be de-allocated by the exit handler, nor used after the exit handler has terminated.

8.6.2.5RXHLT - TheHalt Condition Exit Handler

Note: Because tHeXHLT exit handler is called after eveREXX instruction, enabling this exit
slowsREXX program execution.

The main code for this exit handler has the symbolic VRKIFLT. There are two sub-functions:
[RXHLTTST]
Called whenever the interpreter polls externally raladT conditions; i.e. after
everyREXX instruction.

The definition of theParmBlock is:

typedef struct {
unsigned rxfhhlt : 1 ;
} RXHLTTST_PARM ;

Therxfhhit parameter is set to the state of &L T condition in the interpreter;
eitherTRUE or FALSE.

[RXHLTCLR]

Called to acknowledge processing of the HALT condition when the interpreter has
recognized and raised a HALT condition.

8.6.2.6RXTRC - The Trace Status Exit Handler
Not implemented.
8.6.2.7RXINI - Thelnitialization Exit Handler

RXTER and this exit handler are a bit different from the otHieINI provides the application
programmer with a method of getting control before the execution of the script Bsamain
purpose is to enable manipulation of the variable pool in order to set up certain variabkeshigefor
script starts, or set the trace mode.

It has only one subfunctioRXINIEXT, called once during each callRexxStart(): just before the
first REXX statement is interpreted. Variable manipulations performed during this kXiawe
effect when the script starts.

As there is no information to be communicated during this exit, the valéawhBlock is
undefined. It makes no difference whether you reRX&EXIT_HANDLED or
RXEXIT_NOT_HANDLED, since there is no situation to handle.

8.6.2.8RXTER - The Termination Exit Handler
This exit resembleRXINI. Its sole subfunction RXTEREXT, which is called once, just after the

227

last statement of tHREXX script has been interpreted. The state of all variables are intact during
this call; so it can be used to retrieve the values of the variables at the exitipf.gla fact, that
is the whole purpose of this exit handler.)

Like RXINI, there is no information to be communicated during the exRasamBlock is
undefined in this call. And also likeXINI, it is more of a hook than an exit handler, so it does not
matter whether you retuRXEXIT_HANDLED or RXEXIT_NOT_HANDLED.

8.6.2.9RXENYV - The External Environment Exit Handler

This System Exit is specific feegina, so caution should be exercised if you plan on making your
code portable to oth&texx interpreters.

The main code for this exit handler has the symbolic VRKIENV. There are four sub-functions:

[RXGETENV]
Called whenever the BIKALUE) is called to obtain a value from the external
environment. i.e. the call MALURE) is of the form:
VALUE('VARNAME', 'ENVIRONMENT")

[RXSETENV]
Called whenever the BIMALUK) is called to set a value in the external
environment. i.e the call tdALUE) is of the form:
VALUE('VARNAME',newvalue, ENVIRONMENT")

[RXGETCWD]
Called whenever the current working directory is needed to be obtained from the
environment. Th®IRECTORY) BIF respects this system exit.

[RXSETCWD]
Called whenever the current working directory is changed by a ”AIRECTORY
() or CHDIR) BIFs.

TheParmBlock parameter has the following definitions for each sub-function type:

typedef struct {
RXSTRING rxenv_name ; /* the name of the external environment variable */
RXSTRING rxenv_value ; /* the returned value of the external environment
variable */
} RXGETENV_PARM ;

typedef struct {
RXSTRING rxenv_name ; /* the name of the external environment variable */
RXSTRING rxenv_value ; /* the value of the external environment variable */
} RXSETENV_PARM ;

In both of these, thRXSTRING; rxenv_name structure holds the name of the environment
variable as known by the external environment. Note that the valuesRESHI®TRD and
RXSIODTR are ignored if the exit handler does not return the VRXIEXIT HANDLED.

The space used to store the return data foORK®IODTR andRXSIOTRD sub-functions, must be
provided by the exit handler itself, and the space is not de-allocated by the intefretgpace

can be reused by the application at any later time. The space allocated to hold theddathe
RXSIOSAY andRXSIOTRC sub-functions, will be allocated by the interpreter, and must neither
be de-allocated by the exit handler, nor used after the exit handler has terminated.

228

8.7 The External Queue Interface

The external queue interface provide a mechanism for interacting with theetgegexternal
gueues. This interface is analogous &exx program's use of PUSH, QUEUE, PULL, and
RXQUEUE(). Note that this interface only works with the external queues, it caneidace to the
internal named queues that exists within the interpreter.

8.7.1The RexxCreateQueue() function
This function is used to create a new, named, external queue.

The prototype foRexxCreateQueue() is:

APIRET APIENTRY RexxCreateQueue(
PSZ Buffer,
ULONG BuffLen,
PSZ RequestedName,
ULONG *DupFlag

);
The following parameters are input, and their significance are:

[RequestedName]
Points to an ASCII NUL terminated character string which specifies the ofitne
queue to be created. See Queue Names for the structure of a queue name. If the user
wishes to have the interpreter create a unique queue name on the local queue server
at the default port number, then this value should be set to NULL. To request an
interpreter-generated queue name, on the maét@déstening on por6858 then
specify@fred:5858 i.e. leave the queue name portion blank.

The following parameters are output, and their significance are:

[Buffer]
Points to an ASCII NUL terminated character string allocated by the user. fiee na
of the queue that is created will be copied into this area.

[BuffLen]
Specifies the size of the memory area pointed Buifer.

[DupFlag]
Indicates if the queue name specified already exists. If a queue name alis&gy ex
DupFlag is set to 1, otherwise it is set to 0.

TheRexxCreateQueue() returns arunsigned long, which carries status information describing
the outcome of the operation. The status will be one dARXKQUEUE values:

[RXQUEUE_OK]

The queue was successfully created.
[RXQUEUE_NOEMEM]

The queue was not created, due to lack of memory.
[RXQUEUE_BADQNAME]

The queue name is invalid or “SESSION” is specified.

229

8.7.2The RexxDeleteQueue() function
This function is used to delete a named, external queue.

The prototype foRexxDeleteQueue() is:

APIRET APIENTRY RexxDeleteQueue(
PSZ QueueName

)i

The only parameters is an input, and its significance is:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the ofiine
queue to be deleted. See Queue Names for the structure of a queue name.

The RexxDeleteQueue() returns arunsigned long, which carries status information describing
the outcome of the operation. The status will be one dARXKQUEUE values:

[RXQUEUE_OK]

The queue was successfully deleted.
[RXQUEUE_NOTREG]

The queue name specified does not exist.
[RXQUEUE_BADQNAME]

The queue name was not specified.

8.7.3The RexxQueryQueue() function
This function is used to determine the number of items that are available on the naerad| ext
queue.

The prototype foRexxQueueQueue() is:

APIRET APIENTRY RexxQueryQueue(
PSZ QueueName,
ULONG *Count

);

One parameters is an input, and its significance is:
[QueueName]
Points to an ASCII NUL terminated character string which specifies the ofitne
gueue to be queried. See Queue Names for the structure of a queue name.
The following parameter is output, and its significance is:
[Count]
Points to an unsigned long which indicates the number of items on the specified
queue.

The RexxQueryQueue() returns arunsigned long, which carries status information describing
the outcome of the operation. The status will be one dARXKQUEUE values:

230

[RXQUEUE_OK]
The queue was successfully queried, @odntcontains the number of items on the
queue.
[RXQUEUE_NOTREG]
The queue name specified does not exist.
[RXQUEUE_BADQNAME]
The queue name was not specified

8.7.4The RexxAddQueue() function
This function is used to determine add an item to a named, external queue.

The prototype foRexxAddQueue() is:

APIRET APIENTRY RexxAddQueue(
PSZ QueueName,
PRXSTRING EntryData,
ULONG AddFlag

)i

All parameters are input, and their significance are:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the ofitne
queue on which the data is to be added. See Queue Names for the structure of a
gueue name.

[EntryData]
Points to a RXSTRING structure containing the data to be added to the queue.

[AddFlag]
Indicates how the data is to be added. Can be one of:
RXQUEUE_FIFO, to indicate that the data is to be added in a first-in-first-out orde

This is equivalent to the QUEUE keyword.
RXQUEUE_LIFO, to indicate that the data is to be added in a last-in-first-out order
This is equivalent to the PUSH keyword.

The RexxAddQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRIK@UEUE values:

[RXQUEUE_OK]

The data was successfully added to the specified queue.
[RXQUEUE_NOTREG]

The queue name specified does not exist.
[RXQUEUE_BADQNAME]

The queue name was not specified

8.7.5The RexxPullQueue() function

This function is used to extract an item from the specified named, external queue Wdde=sfsl,
the item from the queue is returned, and that item deleted from the queue.

The prototype foRexxPullQueue() is:

231

APIRET APIENTRY RexxPullQueue(
PSZ QueueName,
PRXSTRING DataBuf,
PDATETIME TimeStamp,
ULONG WaitFlag

);
The following parameters are input, and their significance are:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the ofiine
gueue from which the data is to be extracted. See Queue Names for the structure of a
queue name.

[WaitFlag]
Indicates if the process should wait until there is data in the specified queue before
returning. This could cause the process to block forever, if no data is due in the
gueue.Regina does not support this option at this stage; RXQUEUE_NOWAIT is
assumed Value can be one of:
RXQUEUE_WAIT, the process is to block and wait for data if the queue is currently
empty.
RXQUEUE_NOWAIT, the process does not wait for data in the queue if it is
currently empty. RexxPullQueue() will return RXQUEUE_EMPTY if thereas
data in the queue.

The following parameters are output, and their significance are:

[DataBuf]
Points to a RXSTRING structure into which the contents of the extracted item are
placed. The memory associated with the RXSTRING strptr, should be deallocated
using RexxFreeMemory().

[TimeStamp]
Points to a PDATETIME structure, which on return, contains the time details of
when the item was added to the external qu&esgina does not support this option
at this stage.

TheRexxPullQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRIM®UEUE values:

[RXQUEUE_OK]

The data was successfully added to the specified queue.
[RXQUEUE_NOTREG]

The queue name specified does not exist.
[RXQUEUE_BADQNAME]

The queue name was not specified
[RXQUEUE_EMPTY]

The queue was empty and RXQUEUE_NOWAIT was specified.
[RXQUEUE_BADWAITFLAG]

The value of th&VaitFlag parameter was not RXQUEUE_WAIT or

RXQUEUE_NOWAIT.

232

8.8 The Macro Space Interface

The macro space interface provide a mechanism for pre-loading eXResoaprograms into the
current interpreter's macro space, so that the macros can be executeddastading them from
disk each time they are called. This interface is not availalitegmna at this stage.

8.8.1The RexxAddMacro() function
8.8.2The RexxDropMacro() function
8.8.3The RexxSaveMacroSpace() function
8.8.4The RexxLoadMacroSpace() function
8.8.5The RexxQueryMacro() function
8.8.6The RexxReorderMacro() function
8.8.7The RexxClearMacroSpace() function

233

8.9 Allocating and De-allocating Space

For several of the functions described in this chapter, the application calling theémllouge or
de-allocate dynamic memory. Depending on the operating system, compiRE Xixdinterpreter,
the method for these allocations and de-allocations vary. Because Bfetisa supplies the API
function calls RexxAllocateMemory() and RexxFreeMemory(). These fumctire wrappers for
the appropriate compiler or operating system memory functions.

8.9.1The RexxAllocateMemory() function

The prototype foRexxAllocateMemory() is:

PVOID APIENTRY RexxAllocateMemory(
ULONG size

)i

The parameter is an input, and its significance is:

[size]
The number of bytes of dynamic memory requested.

RexxAllocateMemory() returns a pointer to the newly allocated block of memory, or NULL if no
memory could be allocated.

8.9.2The RexxFreeMemory() function
The prototype foRexxFreeMemory() is:

APIRET APIENTRY RexxFreeMemory(
PVOID MemoryBlock

);

The parameter is an input, and its significance is:
[MemoryBlock]
A void pointer to the block of memory allocated by the interpreter, or allocated by a
previous call tdRexxAllocateMemory().

RexxFreeMemory() always return 0.

234

8.10Calling back into running REXX Code

This section describes tiRexxCallBack() function, which allows the application to execute a
procedure within the runnin@EXX program. This function is particularly useful for building a
Rexx interface to those library applications that operate using a callbabkmsra.

A callback mechanism is one where certain events within a particular ajgplicati beconnected
to a particular function, so that when a particular event occursptireectedunction is executed.
Many C library applications use a callback mechanism.

This function is specific tRRegina, so caution should be exercised if you plan on making your code
portable to otheREXX interpreters.

8.10.1The RexxCallBack() function

This function is used to execute an internal procedure within the ruREK script. The
procedure is executed with the same context as if the procedure were calledtfiontheREXX
program as a function call.

APIRET APIENTRY RexxCallBack(
PSZ ProcedureName,
LONG ArgCount,
PRXSTRING ArgList,
PUSHORT ReturnCode,
PRXSTRING Result

),

Of these parameterReturnCode andResult are output-only. The rest of the parameters are input-
only. The significance of the parameters are:

[ProcedureName]
An ASCII NUL terminated string, specifying the name of the internal procedure of
the runningREXX script to be executed. This internal procedure name must exist or
this function will return witrRX_CB_BADN.

[ArgCount]
The number of parameter strings given to the procedure. This is the number of
definedREXX-strings pointed to by th&rgList parameter. The default maximum
number of arguments that can be passed is 32, but this can be changed by the
MAX_ARGS TO_REXXSTART macro in rexx.h.

[ArgList]
Pointer to an array ®EXX-strings, constituting the parameters to this call to
REXX. The size of this array is given by the paramatgCount. If ArgCount is
greater than one, the first and last parameterArglast[0] andArgList[ArgCount-
1]. If ArgCount is O, the value ofirgList is irrelevant.

If the strptr of one of the elements in the array pointed té\mList is NULL, that
means that this parameter is empty (i.e. unspecified, as opposed to a string of zero
size).

[ReturnCode]
Pointer to &SHORT integer where the return code from the caRedcedureName
is stored, provided that the returned value is numeric, and within the range -(2**15)
to 2**15-1. |1 don't know what happensReturnCode if either of these conditions

235

is not satisfied. It probably becomes undefined, which means that it is totallysuseles
since the program has to inspect the return string in order to determine whether
ReturnCode is valid.
Regina allows the value of this parameter to be NULL if the user is not interested in
it.

[Result]
Points to &REXX string into which the result string from the called
ProcedureName is written. The caller may or may not let gteptr field be
supplied. If supplied (i.e. it is non-NULL), that area will be used, else a new area
will be allocated. If the supplied area is used, its size is supposed to be given by the
strlength field. If the size if not sufficient, a new area will be allocated, by
RexxAllocateMemory(), and the caller must see to that it is properly de-allocated
using RexxFreeMemory().
Regina allows the value of this parameter to be NULL if the user is not interested in
it.

Note that theArgCount parameter need not be the same aé&\R@&() built-in function would
return. Differences will occur if the last entriesArgList arenull strings

The arguments passed to fr®cedureName will be passed individually. i.e. tHRARSE ARG
command in th&rocedureName must use commas to separate the arguments.

The valid return values froRexxCallBack() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can
expect the error value to have the same absolute value REX)¥ syntax error (but
opposite signs, of course).
[Zero, orRX_CB_OK]
indicates that the interpreter finished executing the procedure without errors.
[Positive]
indicates probably that some problem occurred, that made it impossible to execute
the procedure, e.g. a bad parameter value. The values that can be return are:

RX_CB_BADP bad parameters
RX_CB_NOTSTARTED there is no runninREXX program
RX_CB_TOOMANYP too many parameters supplied

RX_CB_BADN theProcedureName does not
exist

During the course of an execution BexxCallBack(), subcommand handlers and exit handlers
might be called. These may call any function in the application interface, inclutbtizea
invocation ofRexxCallBack().

236

237

9 Implementation Limits

This chapter lists the implementation limits required byREXX standard. All implementations
are supposed to support at least these limits.

9.1 Why Use Limits?

Why use implementation limits at all? Often, a program (ab)uses a featuanguage to an extent
that the implementor did not foresee. Suppose an implementor decides that variableamanos
be longer than 64 bytes. Sooner or later, a programmer gets the idea of using very lbley varia
names to encode special information in the name; maybe as the output of a machinedgenerat
program. The result will be a program that works only for some interpreters or osbnfier
problems.

By introducing implementation limitEXX tells the implementors to what extent a
implementation is required to support certain features, and simultaneousky/titéglirogrammers
how much functionality they can assume is present.

Note that these limited are required minimums for what an implementation howst/sh
interpreter is not supposed to enforce these limits unless there is a good reason to.

9.2 What Limits to Choose?

A limit must not be perceived as an absolute limit, the implementor is free tasedte limit. To
some extent, the implementor may also decrease the limit, in which case thimusperly
documented as a non-standard feature. Also, the reason for this should be noted in the
documentation.

Many interpreters are likely to have "memory" as an implementation limanimg that they will
allow any size as long as there is enough memory left. Actually, this is equitatentimit, since
running out of memory is an error with limit enforcing interpreters as well. Suepieters let the
user set the limits, often controlled through @ TIONSInstruction.

For computers, limit choices are likely to be powers of two, like 256, 1024, 8192, etc. However, the
REXX language takes the side of the user, and defines the limits in units which looks as more
"sensible" to computer non-experts: most of the limiREXX are numbers like 250, 500, 1000,

etc.

9.3 Required Limits

These are the implementation minimums define®BXX:

[Binary strings]
Must be able to hold at least 50 characters after packing. That means that the unpacked si
might be at least 400 characters, plus embedded white space.

[Elapse time clock]
Must be able to run for at least 10**10-1 seconds, which is approximately 31.6 years. In
general, this is really a big overkill, since virtually no program will run for & sugeriod.
Actually, few computers will be operational for such a period.

238

[Hexadecimal strings]
Must be able to hold at least 50 characters after packing. This means that the unpacked si
might be at least 100 characters, plus embedded white space.

[Literal strings]
Must be able to hold at least 100 characters. Note that a double occurrence of the quote
character (the same character used to delimit the string) in a literglgiunts as a single
character. In particular, it does not count as two, nor does it start a new string.

[Nesting of comments]
Must be possible to in at least 10 levels. What happens then is not really defined. Maybe one
of the syntax errors is issued, but none is obvious for this use. Another, more dangerous way
of handling this situation would be to ignore new start-of-comments designators when on
level 10. This could, under certain circumstances, lead to running of code that is actually
commented out. However, most interpreter are likely to support nesting of comments to an
arbitrary level.

[The Number of Parameters]
In calls must be supported up to at least 10 parameters. Most implementations support
somewhat more than that, but quite a few enforce some sort of upper limit. For the built-in
function, this may be a problem only fdiN() andMAX().

[Significant digits]
Must be supported to at least 9 decimal digits. Also, if an implementation supportgfloat
point numbers, it should allow exponents up to 9 decimal digits. An implementation is
allowed to operate with different limits for the number of significant digits aachtmbers
of digits in exponents.

[Subroutine levels]
May be nested to a total of 100 levels, which counts both internal and external functions, but
probably not built-in functions. You may actually trip in this limit if you are using sbeeir
solution for large problems. Also, some tail-recursive approaches may crasHhimithis

[Symbol (name) length]
Can be at least 50 characters. This is the name of the symbol, not the length of thatvalue if
names a variable. Nor is it the name of the variable after tail substitution. Inattky, it
is the symbol as it occurs in the source code. Note that this applies not only to simple
symbols, but also compound symbols and constant symbols. Consequently, you can not
write numbers of more than 50 digits in the source code, eddONFERIC DIGITS is set
high.

[Variable name length]
Of at least 50 characters. This is the name of a variable (which may or may nytiese
tail substitution.

9.4 Older (Obsolete) Limits

First edition of TRL1 contained some additional limits, which have been relaxed irctmelse
edition in order to make implementation possible for a large set of computers. Tinesark:

[Clock granularity]
Was defined to be at least of a millisecond.

Far from all computers provide this granularity, so the requirement have beeul .rélage

current requirement is a granularity of at least one second, although a milliseaoulcgty
is advised.

239

9.5 What the Standard does not Say

An implementation might enforce a certain limit even though one is not specified tartdarsl.
This section tries to list most of the places where this might be the case:

[The stack]
(Also called: the external data queue) is not formally defined as a concept ofghada
itself, but a concept to which tiREXX language has an interface. Several limits might
apply to the stack, in particular the maximum length of a line in the stack and theumaxim
number of lines the stack can hold at once.

There might also be also be other limits related to the stack, like a maximum raimber
buffers or a maximum number of different stack. These concepts are not referred to by
REXX, but the programmer ought to be aware of them.
[Files]
May have several limits not specified by the definitioRR&XX, e.g. the number of files
simultaneously open, the maximum size of a file, and the length and syntax of file names
Some of these limits are enforced by the operating system rather than an im@lieme
The programmer should be particularly aware of the maximum number of simultaneously
open files, sincREXX does not have a standard construct for closing files.
[Expression nesting]
Can in some interpreters only be performed to a certain level. No explicit minimurhds
been put forth, so take care in complex expressions, in particular machine generated
expressions.
[Environment name length]
May have some restrictions, depending on your operating system. There is not defined any
limit, but there exists an error message for use with too long environment names.
[Clause length]
May have an upper limit. There is defined an error message "Clause too long" which is
supposed to be issued if a clause exceeds a particular implementation dependeuoitesize. N
that a "clause" does not mean a "line" in this context; a line can contain mukie <l
[Source line length]
Might have an upper limit. This is not the same as a "clause" (see above). Tytheally
source line limit will be much larger than the clause limit. The source linedirght to be
as large as the string limit.
[Stack operations]
Might be limited by several limits; first there is the number of strings istének, then there
is the maximum length of each string, and at last there might be restrictionsobartheter
set allowed in strings in the stack. Typically, the stack will be able to hold aractdrant
will either have "memory" as the limit for the number of string and the length lofstdag,
or it might have a fixed amount of memory set aside for stack strings. Some
implementations also set a maximum length of stack strings, often 2*8 or 2*16.

9.6 What an Implementation is Allowed to "Ignore"

In order to make thREXX language implementable on as many machines as possiliREXe
standard allow implementation to ignore certain features. The existenceeofdheses are
recommended, but not required. These features are:

[Floating point numbers]
Are not required; integers will suffice. If floating points are not supported, numénretsave

240

not fractional or exponential part. And the normal division will not be available, i.e. the
operator I' " will not be present. Use integer division instead.

[File operations]
Are defined inRREXX, but an implementation seems to be allowed to differ in just about any
file operation feature.

9.7 Limits in Regina

Regina tries not to enforce any limits. Wherever possible, "memory" is the limit, abgteof
some CPU whenever internal data structures must be expanded if their iretiaeséztoo small.
Note thatRegina will only increase the internal areas, not decrease them afterwards. iGheleat
is that if you happen to need a large internal area once, you may need it later in theogaamne
too.

In particular,Regina has the following limits:

Binary strings source line size
Clock granularity 0.001-1 second (note 3)
Elapse time clock until ca. 2038 (note 1)
Named Queues 100
Hexadecimal strings source line size
Interpretable string source line size

Literal string length source line size

Nesting of comments memory

Parameters memory
Significant digits memory (note 2)
Subroutine levels memory

Symbol length source line size

Variable name length memory (note 2)

Notes:

1) Regina uses the Unix-derived cdime() for the elapse time (and time in general). This is a
function which returns the number of seconds since Jantid§7D. According to the ANSI C
standard, in whiclRegina is written, this is a number which will at least hold the number 2**31-1.
Therefore, these machines will be able to work until about 203&Regikha will satisfy the
requirement of the elapse time clock until 2006. By then, computers will hopefully be 64 bit.

Unfortunately, thegime() C function call only returns whole secondsR&gina is forced to use
other (less standardized) calls to get a finer granularity. However, most tovglaad aboutime
() applies for these too.

2) The actual upper limit for these are the maximum length of a string, whiclee&saRt*32. So
for all practical purposes, the limit is "memory".

3) The clock granularity is a bit of a problem to define. All systems can be trustectta ha
granularity of about 1 second. Except from that, it's very difficult to say anythingspecific for
certain. Most systems allows alternative ways to retrieve the timaggvmore accurate result.
Wherever these alternatives are availaBlsgina will try to use them. If everything else fails,
Regina will use 1 second granularity.

241

For most machines, the granularity are in the range of a few milliseconds. $iocatdyxamples
are: 20 ms for Sun3, 4 ms for Decstations 3100, and 10 ms for SGI Indigo. Since this is a hardware
restriction, this is the best measure anyone can get for these machines.

242

243

10 Appendixes
10.1Definitions

In order to make the definitions more readable, but still have a rigid definition of itig tavme
extra comments have been added to some of the definitions. These comments are englosed in s
brackets.

Argument is anexpressiorsupplied to &nctionor subroutine and it provides data on which the
call can work on.

Assignment is aclausein which secondiokenis the equal sign. [Note that the statemeats=b"
and '3=4" are an (invalid) assignment, not an expression. The type of the first token isintelé
the second token is the equal sign, then the clause is assumed to be an assignment.]

Blanks are characters whiaylyphsare empty space, either vertically or horizontally. A blank is not
atoken(but may sometimes be embedded in tokens), but attkexs separatordExactly which
characters are considered blanks will differ between operating systemspaach@ntations, but the
<space> character is always a blank. The <tab> character is also oftenredrnsidieank. Other
characters considered blank might be the end-of-line <eol>), vertical tab (swd>fprenfeed

(<ff>). See specific documentation for each interpreter for more information.]

Buffer

Caller routine

Character is a piece of information about a mapping from a storage unit (normally a byte) and a
glyph Often used as "the meaning of the glyph mapped to a particular storage unit". [Theglyph "
is the same in EBCDIC and ASCII, but the character "A" (i.e. the mapping from glgbibrage

unit) differs.]

Character string is an finite, ordered, and possibly empty settafracters

Clause is a non-empty collection abkensin aREXX script. The tokens making up a clause are all
the consecutive tokens delimited by two consecudi@ase delimiters[Clauses are further divided
into null clausesinstructions assignmentsandcommandg

Clause delimiter is a non-empty sequence of elements of a subsekehs normally the linefeed
and the semicolon. Also the start and end REXX script are considered clause delimiters. Also
colon is a clause separator, but it is only valid after a label.

Command

Compound variableis avariablewhich name has at least oné' ‘tharacter that isn't positioned at
the end of the name.

Current environment is a particulaenvironmento whichcommandss routed if no explicit
environment is specified for their routing.

Current procedurelevel is theprocedure levein effect at a certain point during execution.

244

Daemon

Decimal digit

Devicedriver

Digit is a single charactéraving a numeric value associate with its glyph.
Empty string

Environment is a interface to whicREXX can routecommandsind afterwards retrieve status
information likereturn values

Evaluation is the process applied to erpressionn order to derive aharacter string
Exposing is the binding of aariablein thecurrent procedure leveb the variable having the same
name in thesaller routine This binding will be in effect for as long as the current procedure level is

active.

Exponential form is a way of writing particularly large or smalimbersn a fashion that makes
them more readable. The number is divided into a mantissa and an exponent of base 10.

Expression is a non-empty sequencetokens for which there exists syntactic restrictions on
which tokens can be members, and the order in which the tokens can occur. [Typically, an
expression may consist of literal strings or symbols, connected by concatenationratats:pe

External data queue see "stack".

External subroutineis ascriptof REXX code, which is executed as a responsestdbaoutineor
functioncall that is neither internal nor built-in.

FIFO

Glyph is an atomic element of text, having a meaning and an appearance; like a letteraa dig
punctuation mark, etc.

Hex is used as a general abbreviation for taexadecimawhen used in compound words like hex
digit and hex string.

Hexadecimal digit is adigit in the number system having a base of 16. The first ten digits are
identical with thedecimal digit50-9), while for the last six digits, the first six letters of the Latin
alphabet (A-F) are used.

Hexadecimal string is acharacter stringthat consists only of tHeexadecimal digitsand with
optionalwhitespaceo divide the hexadecimal digits into groups. Leading or trailing whitespace is
illegal. All groups except the first must consist of an even number of digits. Ifgshgrbup have

an odd number of digits, an extra leading zero is implied under some circumstances.

Instruction is aclausethat is recognized by the fact that the ficktenis a speciakeyword and

245

that the clause is not @ssignmenor label. Instructions typically are well-definB&EXX language
components, such as loops and function calls.

Interactivetrace is atrace mode, where thmterpreterhalts execution between eadhuse and
offer the user the possibility to specify arbitr&iXX statementso be executed before the
execution continues.

L abel

LIFO

Literal nameis a name which will always be interpreted as a constant, i.e. that no variable
substitution will take place.

Literal string is atokenin aREXX script, that basically is surrounded by quotation marks, in order
to make aharacter stringcontaining the sameharactersas the literal string.

Keyword is a element from finite set of symbols.
Main level
Main program

Name space is a collection of namedariables In general, the expression is used when referring to
the set of variables available to {i@gramat some point during interpretation.

Nullstring is acharacter stringhaving the length zero, i.e. an empty character string. [Note the
difference from the undefined string.]

Operating system
Parameters
Parsing
Procedurelevel

Program is a collection oREXX code, which may be zero or m@eipts or other repositories of
REXX code. However, a program must contain a all the code to be executed.

Queue see "external data queue" or "stack".

Routineis a unit during run-time, which is a procedural level. Certain settings are savesl ac
routines Oneroutine (the calleroutine) can be temporarily suspended while anotbatineis
executed (the calleautine). With such nesting, the calledutine must be terminated before
execution of the calleoutine can be resumed. Normally, tBALL instruction or a function call is
used to do this. Note that the main level &EXX script is also @aoutine

Script is a single file containinBEXX code.

246

Space separ ated
Stack

Statement is aclausehaving in general some action, i.e. a clause other thai elause
[Assignments, commands and instructions are statements.]

Stem collection
Stem variable
Strictly order

Subkeyword is akeyword but the prefix "sub” stresses the fact thaymbolis a keyword only in
certain contexts [e.g. inside a particular instruction].

Subroutineis aroutinewhich has been invoked from anotiREXX routine i.e. it can not be the
"main” program of &EXX script.

Symbol

Symbol table

Tail substitution

Term

Token

Token separator
Uninitialized

Variable name
Variable symbol
Whitespace One or several consecutiBlank characters.
hex literal

norm. hex string

bin {digit,string,literal}
norm. bin string
packed char string

Character strings is the only type of data available in Rexx, but to some extergrthsubtypes' of
character strings; character strings which contents has certain folmaaé 3pecial formats is

247

discussed below.

10.2Bibliography

[KIESEL]

Peter C. KieselREXX - Advanced Techniques for ProgrammitsGraw-Hill, 1993, ISBN
0-07-034600-3

[CALLAWAY]

Merill Callaway, The ARexx Cookbools11-A Girard Blvd. SE, Albuquerque, NM 87106:
Whitestone, 1992, ISBN 0-9632773-0-8

[TRL2]

M. F. Cowlishaw, The REXX Language- Second Editienglewood Cliffs: Prentice-Hall,
1990, ISBN 0-13-780651-5

[TRL1]

M. F. Cowlishaw,The REXX Language - First EditioBnglewood Cliffs: Prentice-Hall,
1985, ISBN 0-13-780735-X

[SYMPOS3]

Proceedings of the REXX Symposium forDdevelopers andUustensford: Stanford Linear
Accelerator Center, 1992

[TRH:PRICE]

Stephen G. PriceSAA Portability chapter 37, pp 477-498. In Goldberg ans Smith I
[TRH], 1992

[TRH]

Gabriel Goldberg and Smith IlI, Philip HChe REXX HandboolcGraw-Hill, 1992, ISBN
0-07-023682-8

[DANEY]

Charles DaneyProgramming in REXXMcGraw-Hill, 1992, ISBN 0-07-015305-1
[BMARKS]

Brian Marks, Advanced REXX programmind/cGraw-Hill, 1992
[ZAMARA]

Chris Zamara and Nick Sullivablsing ARexx on the AmigAbacus, 1991, ISBN 1-55755-
114-6

[REXXSAA]

W. David Ashley SAA Procedure Language REXX RefereBcBmberline Dr., Trophy
Club, Tx 76262: Pedagogic Software, 1991

[MCGH:DICT]

Sybil P. ParkerMcGrw-Hill Dictionary of ComputersMcGraw-Hill, 1984, ISBN 0-07-
045415-9

[PIPLAUGER]

248

P. J. PlaugeiThe Standard C LibraryEnglewood Cliffs: Prentice Hall, 1992, ISBN 0-13-
131509-9

[KR]

Brian W. Kernighan and Dennis M. Ritchighe C Programming Language - Second
Edition. Englewood Cliffs: Prentice Hall, 1988, ISBN 0-13-110362-8

[ANSIC]

Programming languages -.G Technical Report ISO/IEC 9899:1990, ISO, Case postale
56, CH-1211 Geneve 20, Switzerland, 1990

[OX:CDICT]

Edward L. Glaser and I. C. Pyle and Valerie lllingswoi@xford Reference Dictionary of
Computing - Third EditionOxford University Press, 1990, ISBN 0-19-286131-X

[ANSI]

Programming Languages - REXXANSI X3.274-1996, 11 West 42nd Street, New York,
New York 10036

249

10.3GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license documehgriging
it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written documenh'tihee" i
sense of freedom: to assure everyone the effective freedom to copy and redistrbtiter
without modifying it, either commercially or noncommercially. Secondarily,Liicisnse preserves
for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the document mus
themselves be free in the same sense. It complements the GNU General Bebtie,lwhich is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free softwareelie=magsftware
needs free documentation: a free program should come with manuals providing the sdomesre
that the software does. But this License is not limited to software manuais;bdeaised for any
textual work, regardless of subject matter or whether it is published as a printed beok. W
recommend this License principally for works whose purpose is instruction or referenc

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by thghtopyri
holder saying it can be distributed under the terms of this License. The "Document},reéosv
to any such manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Docurndaatha
exclusively with the relationship of the publishers or authors of the Document to the Dé@sume
overall subject (or to related matters) and contains nothing that could fallydw#biih that overall
subject. (For example, if the Document is in part a textbook of mathematics, a Sg&eudam
may not explain any mathematics.) The relationship could be a matter of histonnaCttion with
the subject or with related matters, or of legal, commercial, philosophicahleaihjgolitical
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles igreatkzs as being those
of Invariant Sections, in the notice that says that the Document is released undeetiss.

The "Cover Texts" are certain short passages of text that are listedna€Bver Texts or Back-
Cover Texts, in the notice that says that the Document is released under this.Licens

250

A "Transparent" copy of the Document means a machine-readable copy, representechat a f
whose specification is available to the general public, whose contents can be viewditeand e
directly and straightforwardly with generic text editors or (for imagesposed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and thi#aisle for input
to text formatters or for automatic translation to a variety of formatdseiitar input to text
formatters. A copy made in an otherwise Transparent file format whose markup aesigaed
to thwart or discourage subsequent modification by readers is not Transparent. A cigydhat
"Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII wittaslktipy Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and stdnda
conforming simple HTML designed for human modification. Opaque formats include RgstScr
PDF, proprietary formats that can be read and edited only by proprietary word prqc&&dadksor
XML for which the DTD and/or processing tools are not generally available, and thesac
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such follovgeg as are
needed to hold, legibly, the material this License requires to appear in the tleRmagvorks in
formats which do not have any title page as such, "Title Page" means the tekenmaast
prominent appearance of the work's title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the licengesagiing

this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measuresi¢babstr
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number gcopies
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's
license notice requires Cover Texts, you must enclose the copies in covers yhatezaty and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Goisroh the
back cover. Both covers must also clearly and legibly identify you as the publishereatdpess.
The front cover must present the full title with all words of the title equally pramiand visible.
You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve the title ottimadnt and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should putdgherfes
listed (as many as fit reasonably) on the actual cover, and continue the rest ontd pdges

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque comyjroostat

with each Opaque copy a publicly-accessible computer-network location containinglateom
Transparent copy of the Document, free of added material, which the general netwgrieisic

has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of

251

Opaque copies in quantity, to ensure that this Transparent copy will remain thugobecagsise
stated location until at least one year after the last time you distribute goneOgzpy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections

2 and 3 above, provided that you release the Modified Version under precisely this Licdne wit
Modified Version filling the role of the Document, thus licensing distribution and matdit of

the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that obtheri2nt, and

from those of previous versions (which should, if there were any, be listed in the Histwy sé
the Document). You may use the same title as a previous version if the original puijliblaer

version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible fehipudfior
the modifications in the Modified Version, together with at least five of the priraihors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the paihission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and teQaiver Texts given
in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an itengsttleast the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. iff tieere
section entitled "History" in the Document, create one stating the title,argors, and publisher
of the Document as given on its Title Page, then add an item describing the Modifiexh dsrs
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access topaiemains
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omdr& net
location for a work that was published at least four years before the Documenbitdetie

original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications"”, preserve thersetitle, and
preserve in the section all the substance and tone of each of the contributor acknowlesdgement
and/or dedications given therein.

252

L. Preserve all the Invariant Sections of the Document, unaltered in their text bait triles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements”. Such a section may not be included adifinedM
Version.

N. Do not retitle any existing section as "Endorsements” or to conflict in titheawy Invariant
Section.

If the Modified Version includes new front-matter sections or appendices thay@safecondary
Sections and contain no material copied from the Document, you may at your option desigaate som
or all of these sections as invariant. To do this, add their titles to the list of i\@eietions in the
Modified Version's license notice.

These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer revibat the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cofgerttexsame

cover, previously added by you or by arrangement made by the same entity you are acting on behal
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use the
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, undasthe ter
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them ralaaisuht

Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple InvaridinSegith the same
name but different contents, make the title of each such section unique by adding at the end of it
parentheses, the name of the original author or publisher of that section if known, or else a unique
number.

Make the same adjustment to the section titles in the list of Invariant Seatitaslicense notice
of the combined work.

In the combination, you must combine any sections entitled "History" in the various lorigina
documents, forming one section entitled "History"; likewise combine any sectibtiece
"Acknowledgements”, and any sections entitled "Dedications”. You must deletetalhs entitled
"Endorsements.”

253

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documentsimgtk a s

copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individndBy this
License, provided you insert a copy of this License into the extracted document, and fallow thi
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent desaument
works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate"”, and this License does yntb éppl

other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Dadeeiftthe
Document is less than one quarter of the entire aggregate, the Document's Ctsv/aralebe
placed on covers that surround only the Document within the aggregate.

Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translationsDi¢hment
under the terms of section 4.

Replacing Invariant Sections with translations requires special permissiorheir copyright
holders, but you may include translations of some or all Invariant Sections in addition tigitired or
versions of these Invariant Sections. You may include a translation of this Licenskegribwat

you also include the original English version of this License. In case of a disagtéxtvecen the
translation and the original English version of this License, the original Englisiowvevill prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expresslydoimvide
under this License. Any other attempt to copy, modify, sublicense or distribute the Do@ment
void, and will automatically terminate your rights under this License. Howeveegatio have
received copies, or rights, from you under this License will not have their licens@satted so

long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Dottomenta
License from time to time. Such new versions will be similar in spirit to themrgsrsion, but
may differ in detail to address new problems or concerns. See http://www.gnu.ogftéopyl

Each version of the License is given a distinguishing version number. If the Documeint s pieat
a particular numbered version of this License "or any later version" applies to it,yethbhaoption
of following the terms and conditions either of that specified version or of any laseyrvérat has
been published (not as a draft) by the Free Software Foundation. If the Document does gat specif
version number of this License, you may choose any version ever published (not as a draft) by the

254

Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the BregeSof
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front1Claasds
being LIST, and with the Back-Cover Texts being LIST.

A copy of the license is included in the section entitled "GNU Free Documentagmse'ic

If you have no Invariant Sections, write "with no Invariant Sections" instead of salyioly @nes
are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instéaubof-
Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releaseng t
examples in parallel under your choice of free software license, such as the €idtalG ublic
License, to permit their use in free software.

255

	1Introduction to Regina
	1.1Purpose of this document
	1.2Implementation
	1.3Ports of Regina
	1.4Executing Rexx programs with Regina
	1.4.1Switches
	1.4.2External Rexx programs

	2Rexx Language Constructs
	2.1Definitions
	2.2Null clauses
	2.3Commands
	2.3.1.1Assignments

	2.4Instructions
	2.4.1The ADDRESS Instruction
	2.4.2The ARG Instruction
	2.4.3The CALL Instruction
	2.4.4The DO/END Instruction
	2.4.5The DROP Instruction
	2.4.6The EXIT Instruction
	2.4.7The IF/THEN/ELSE Instruction
	2.4.8The INTERPRET Instruction
	2.4.9The ITERATE Instruction
	2.4.10The LEAVE Instruction
	2.4.11The NOP Instruction
	2.4.12The NUMERIC Instruction
	2.4.13The OPTIONS Instruction
	2.4.14The PARSE Instruction
	2.4.15The PROCEDURE Instruction
	2.4.16The PULL Instruction
	2.4.17The PUSH Instruction
	2.4.18The QUEUE Instruction
	2.4.19The RETURN Instruction
	2.4.20The SAY Instruction
	2.4.21The SELECT/WHEN/OTHERWISE Instruction
	2.4.22The SIGNAL Instruction
	2.4.23The TRACE Instruction
	2.4.24The UPPER Instruction

	2.5Operators
	2.5.1Arithmetic Operators
	2.5.2Assignment Operators
	2.5.3Comparative Operators
	2.5.4Concatenation Operators
	2.5.5Logical Operators

	2.6Implementation-Specific Information
	2.6.1Miscellaneous
	2.6.2Implementation of the ADDRESS environment
	2.6.2.1SYSTEM aka ENVIRONMENT aka OS2ENVIRONMENT
	2.6.2.2COMMAND aka CMD aka PATH
	2.6.2.3REXX or REGINA
	2.6.2.4ADRRESS WITH on Windows

	2.6.3Regina Restricted Mode
	2.6.4Native Language Support
	2.6.4.1Error Messages
	2.6.4.2Locale Support
	2.6.4.3Implementation

	3REXX Built-in Functions
	3.1General Information
	3.1.1The Syntax Format
	3.1.2Precision and Normalization
	3.1.3Standard Parameter Names
	3.1.4Error Messages
	3.1.5Possible System Dependencies
	3.1.6Blanks vs. Spaces

	3.2Regina Built-in Functions
	ABBREV(long, short [,length]) - (ANSI)
	ABS(number) - (ANSI)
	ADDRESS() - (ANSI)
	ARG([argno [,option]]) - (ANSI)
	B2C(binstring) - (AREXX)
	B2X(binstring) - (ANSI)
	BEEP(frequency [,duration]) - (OS/2)
	BITAND(string1 [,[string2] [,padchar]]) - (ANSI)
	BITCHG(string, bit) - (AREXX)
	BITCLR(string, bit) - (AREXX)
	BITCOMP(string1, string2, bit [,pad]) - (AREXX)
	BITOR(string1 [, [string2] [,padchar]]) - (ANSI)
	BITSET(string, bit) - (AREXX)
	BITTST(string, bit) - (AREXX)
	BITXOR(string1[, [string2] [,padchar]]) - (ANSI)
	BUFTYPE() - (CMS)
	C2B(string) - (AREXX)
	C2D(string [,length]) - (ANSI)
	C2X(string) - (ANSI)
	CD(directory) - (REGINA)
	CHDIR(directory) - (REGINA)
	CENTER(string, length [, padchar]) - (ANSI)
	CENTRE(string, length [, padchar]) - (ANSI)
	CHANGESTR(needle, haystack, newneedle) - (ANSI)
	CHARIN([streamid] [,[start] [,length]]) - (ANSI)
	CHAROUT([streamid] [,[string] [,start]]) - (ANSI)
	CHARS([streamid]) - (ANSI)
	CLOSE(file) - (AREXX)
	COMPARE(string1, string2 [,padchar]) - (ANSI)
	COMPRESS(string [,list]) - (AREXX)
	CONDITION([option]) - (ANSI)
	COPIES(string, copies) - (ANSI)
	COUNTSTR(needle, haystack) - (ANSI)
	CRYPT(string, salt) - (REGINA)
	DATATYPE(string [,option]) - (ANSI)
	DATE([option_out [,date [,option_in]]]) - (ANSI)
	DELSTR(string, start [,length]) - (ANSI)
	DELWORD(string,start[,length])	(ANSI)
	DESBUF() - (CMS)
	DIGITS() - (ANSI)
	DIRECTORY([new directory]) - (OS/2)
	D2C(integer [,length]) - (ANSI)
	D2X(integer [,length]) - (ANSI)
	DROPBUF([number]) - (CMS)
	EOF(file) - (AREXX)
	ERRORTEXT(errno [, lang]) - (ANSI)
	EXISTS(filename) - (AREXX)
	EXPORT(address, [string], [length] [,pad]) - (AREXX)
	FILESPEC(option, filespec) - (OS/2)
	FIND(string, phrase) - (CMS)
	FORK() - (REGINA)
	FORM() - (ANSI)
	FORMAT(number [,[before] [,[after] [,[expp] [,[expt]]]]]) - (ANSI)
	FREESPACE(address, length) - (AREXX)
	FUZZ() - (ANSI)
	GETENV(environmentvar) - (REGINA)
	GETPID() - (REGINA)
	GETSPACE(length) - (AREXX)
	GETTID() - (REGINA)
	HASH(string) - (AREXX)
	IMPORT(address [,length]) - (AREXX)
	INDEX(haystack, needle [,start]) - (CMS)
	INSERT(string1, string2 [,position [,length [,padchar]]]) - (ANSI)
	JUSTIFY(string, length [,pad]) - (CMS)
	LASTPOS(needle, haystack [,start]) - (ANSI)
	LEFT(string, length [,padchar]) - (ANSI)
	LENGTH(string) - (ANSI)
	LINEIN([streamid][,[line][,count]])	(ANSI)
	LINEOUT([streamid] [,[string] [,line]]) - (ANSI)
	LINES([streamid] [,option]) - (ANSI)
	LOWER(string) - (REGINA)
	MAKEBUF() - (CMS)
	MAX(number1 [,number2] ...) - (ANSI)
	MIN(number [,number] ...) - (ANSI)
	OPEN(file, filename, ['Append'|'Read'|'Write']) - (AREXX)
	OVERLAY(string1, string2 [,[start] [,[length] [,padchar]]]) - (ANSI)
	POOLID() - (REGINA)
	POPEN(command [,stem.]) - (REGINA)
	POS(needle, haystack [,start]) - (ANSI)
	QUALIFY([streamid]) - (ANSI)
	QUEUED() - (ANSI)
	RANDOM(max) - (ANSI)
	RANDOM([min] [,[max] [,seed]]) - (ANSI)
	RANDU([seed]) - (AREXX)
	READCH(file, length) - (AREXX)
	READLN(file) - (AREXX)
	REVERSE(string) - (ANSI)
	RIGHT(string, length[,padchar]) - (ANSI)
	RXFUNCADD(externalname, library, internalname) - (SAA)
	RXFUNCDROP(externalname) - (SAA)
	RXFUNCERRMSG() - (REGINA)
	RXFUNCQUERY(externalname) - (SAA)
	RXQUEUE(command [,queue|timeout]) - (OS/2)
	SEEK(file, offset, ['Begin'|'Current'|'End') - (AREXX)
	SHOW(option, [name], [pad]) - (AREXX)
	SIGN(number) - (ANSI)
	SLEEP(seconds) - (CMS)
	SOURCELINE([lineno]) - (ANSI)
	SPACE(string[, [length] [,padchar]]) - (ANSI)
	STATE(streamid) - (CMS)
	STORAGE([address], [string], [length], [pad]) - (AREXX)
	STREAM(streamid[,option[,command]])	(ANSI)
	STRIP(string [,[option] [,char]]) - (ANSI)
	SUBSTR(string, start [,[length] [,padchar]]) - (ANSI)
	SUBWORD(string, start [,length]) - (ANSI)
	SYMBOL(name) - (ANSI)
	TIME([option_out [,time [option_in]]]) - (ANSI)
	TRACE([setting]) - (ANSI)
	TRANSLATE(string [,[tableout] [,[tablein] [,padchar]]]) - (ANSI)
	TRIM(string) - (AREXX)
	TRUNC(number [,length]) - (ANSI)
	UNAME([option]) - (REGINA)
	UNIXERROR(errorno) - (REGINA)
	UPPER(string) – (AREXX/REGINA)
	USERID() - (REGINA)
	VALUE(symbol [,[value], [pool]]) - (ANSI)
	VERIFY(string, ref [,[option] [,start]]) - (ANSI)
	WORD(string, wordno) - (ANSI)
	WORDINDEX(string, wordno) - (ANSI)
	WORDLENGTH(string, wordno) - (ANSI)
	WORDPOS(phrase, string [,start]) - (ANSI)
	WORDS(string) - (ANSI)
	WRITECH(file, string) - (AREXX)
	WRITELN(file, string) - (AREXX)
	XRANGE([start] [,end]) - (ANSI)
	X2B(hexstring) - (ANSI)
	X2C(hexstring) - (ANSI)
	X2D(hexstring [,length]) - (ANSI)

	3.3Implementation specific documentation for Regina
	3.3.1Deviations from the Standard
	3.3.2Interpreter Internal Debugging Functions
	ALLOCATED([option])
	DUMPTREE()
	DUMPVARS()
	LISTLEAKED()
	TRACEBACK()

	3.3.3REXX VMS Interface Functions

	4Conditions
	4.1What are Conditions
	4.2What Do We Need Conditions for?
	4.3Terminology

	4.4The Mythical Standard Condition
	4.4.1Information Regarding Conditions (data structures)
	4.4.2How to Set up a Condition Trap
	4.4.3How to Raise a Condition
	4.4.4How to Trigger a Condition Trap
	4.4.5Trapping by Method SIGNAL
	4.4.6Trapping by Method CALL
	4.4.7The Current Trapped Condition

	4.5The Real Conditions
	4.5.1The SYNTAX condition
	4.5.2The HALT condition
	4.5.3The ERROR condition
	4.5.4The FAILURE condition
	4.5.5The NOVALUE condition
	4.5.6The NOTREADY condition
	4.5.7The LOSTDIGITS condition

	4.6Further Notes on Conditions
	4.6.1Conditions under Language Level 3.50
	4.6.2Pitfalls when Using Condition Traps
	4.6.3The Correctness of this Description

	4.7Conditions in Regina
	4.7.1How to Raise the HALT condition

	4.8Possible Future extensions

	5Stream Input and Output
	5.1Background and Historical Remarks
	5.2REXX's Notion of a Stream
	5.3Short Crash-Course
	5.4Naming Streams
	5.5Persistent and Transient Streams
	5.6Opening a Stream
	5.7Closing a Stream
	5.8Character-wise and Line-wise I/O
	5.9Reading and Writing
	5.10Determining the Current Position
	5.11Positioning Within a File
	5.12Errors: Discovery, Handling, and Recovery
	5.13Common Differences and Problems with Stream I/O
	5.13.1Where Implementations are Allowed to Differ
	5.13.2Where Implementations might Differ anyway
	5.13.3LINES() and CHARS() are Inaccurate
	5.13.4The Last Line of a Stream
	5.13.5Other Parts of the I/O System
	5.13.6Implementation-Specific Information
	5.13.7Stream I/O in Regina 0.07a
	5.13.8Functionality to be Implemented Later
	5.13.9Stream I/O in ARexx 1.15
	5.13.10Main Differences from Standard REXX
	5.13.11Stream I/O in BRexx 1.0b
	5.13.12Problems with Binary and Text Modes

	6Extensions
	6.1Why Have Extensions
	6.2Extensions and Standard REXX
	6.3Specifying Extensions in Regina
	6.4The Trouble Begins
	6.5The Format of the OPTIONS clause
	6.6The Fundamental Extensions
	6.7Meta-extensions
	6.8Semi-standards
	6.9Standards

	7The Stack
	7.1Background and history
	7.2General functionality of the stack
	7.2.1Basic functionality
	7.2.2LIFO and FIFO stack operations
	7.2.3Using multiple buffers in the stack
	7.2.4The zeroth buffer
	7.2.5Creating new stacks

	7.3The interface between REXX and the stack
	7.4Strategies for implementing stacks
	7.5Implementations of the stack in Regina
	7.5.1Implementation of the internal stack in Regina 2.2
	7.5.2Implementation of the external stack in Regina 2.2
	rxstack
	rxqueue
	rxqueue Built-in Function
	Queue Names
	Security of External Queues
	Environment Variables

	8Interfacing Rexx to other programs
	8.1Overview of functions in SAA
	8.1.1Include Files and Libraries
	8.1.2Preprocessor Symbols
	8.1.3Data structures and data types
	
	8.1.3.1The RXSTRING structure
	8.1.4The RXSYSEXIT structure

	8.2The Subcommand Handler Interface
	8.2.1What is a Subcommand Handler
	8.2.2The RexxRegisterSubcomExe() function
	8.2.3The RexxRegisterSubcomDll() function
	8.2.4The RexxDeregisterSubcom() function
	8.2.5The RexxQuerySubcom() function

	8.3The External Function Handler Interface
	8.3.1What is an External Function Handler
	8.3.2The RexxRegisterFunctionExe() function
	8.3.3The RexxRegisterFunctionDll() function
	8.3.4The RexxDeregisterFunction() function
	8.3.5The RexxQueryFunction() function

	8.4Executing REXX Code
	8.4.1The RexxStart() function

	8.5Variable Pool Interface
	8.5.1Symbolic or Direct
	8.5.2The SHVBLOCK structure
	8.5.3Regina Notes for the Variable Pool
	8.5.4The RexxVariablePool() function

	8.6The System Exit Handler Interface
	8.6.1The System Exit Handler
	8.6.2List of System Exit Handlers
	
	8.6.2.1.1RXFNC - The External Function Exit Handler
	8.6.2.2RXCMD - The Subcommand Exit Handler
	8.6.2.3RXMSQ - The External Data Queue Exit Handler
	8.6.2.4RXSIO - The Standard I/O Exit Handler
	8.6.2.5RXHLT - The Halt Condition Exit Handler
	8.6.2.6RXTRC - The Trace Status Exit Handler
	8.6.2.7RXINI - The Initialization Exit Handler
	8.6.2.8RXTER - The Termination Exit Handler
	8.6.2.9RXENV - The External Environment Exit Handler

	8.7The External Queue Interface
	8.7.1The RexxCreateQueue() function
	8.7.2The RexxDeleteQueue() function
	8.7.3The RexxQueryQueue() function
	8.7.4The RexxAddQueue() function
	8.7.5The RexxPullQueue() function

	8.8The Macro Space Interface
	8.8.1The RexxAddMacro() function
	8.8.2The RexxDropMacro() function
	8.8.3The RexxSaveMacroSpace() function
	8.8.4The RexxLoadMacroSpace() function
	8.8.5The RexxQueryMacro() function
	8.8.6The RexxReorderMacro() function
	8.8.7The RexxClearMacroSpace() function

	8.9Allocating and De-allocating Space
	8.9.1The RexxAllocateMemory() function
	8.9.2The RexxFreeMemory() function

	8.10Calling back into running REXX Code
	8.10.1The RexxCallBack() function

	9Implementation Limits
	9.1Why Use Limits?
	9.2What Limits to Choose?
	9.3Required Limits
	9.4Older (Obsolete) Limits
	9.5What the Standard does not Say
	9.6What an Implementation is Allowed to "Ignore"
	9.7Limits in Regina

	10Appendixes
	10.1Definitions
	10.2Bibliography
	10.3GNU Free Documentation License

