
Ecasound User’s Guide

Kai Vehmanen

29012009

Contents

1 Preface 3

2 Document history 4

3 Introduction 6

3.1 What is Ecasound? . 6
3.2 History . 6

4 Ecasound concepts 7

4.1 Audio object . 7
4.2 Chain . 7
4.3 Chain operators and controllers 7
4.4 Chainsetup . 8
4.5 Current position . 8
4.6 Ecasound Control Interface - ECI 8
4.7 Ecasound Interactive Mode - EIAM 8
4.8 Ecasound Option Syntax - EOS 9

5 Using 10

5.1 Where to start? . 10
5.2 Rules for editing chainsetups . 10
5.3 Chain operators and controllers 11
5.4 Configuration . 11
5.5 Common problems . 11

5.5.1 I get occasional audio dropouts during operation? How to get rid of them? 11
5.5.2 Can I use multiple soundcards? 12
5.5.3 Problems with panning mono files 12
5.5.4 Filenames with commas not handled correctly 13

6 User interfaces and Applications 14

6.1 Ecasound . 14
6.2 Ecasignalview . 14

6.2.1 Basic use . 14
6.2.2 Further Reading . 15

6.3 Ecatools . 15

1

7 Advanced features 16

7.1 Audio loop devices . 16
7.1.1 Example of use . 16

7.2 Ecasound Wave Files - the EWF (.ewf) format 17
7.2.1 General . 17
7.2.2 File format . 17
7.2.3 Example of ewf use . 17

7.3 Effect presets . 18
7.3.1 General . 18
7.3.2 Example of preset use . 18
7.3.3 Preset parameters . 19
7.3.4 Parameter descriptors . 19

7.4 Gate operators . 20
7.4.1 Example of use . 20

7.5 LADSPA plugins . 21
7.5.1 Ecasound is not able to find any LADSPA plugins I have installed! 21

7.6 JACK Audio Server . 21
7.6.1 Basic Input and Output 21
7.6.2 More Advanced Port Creation 22
7.6.3 Transport Control . 23
7.6.4 JACK and Ecasound states 23
7.6.5 Troubleshooting . 24
7.6.6 Deprecated JACK input/output syntax 24

8 Miscellaneous 25

8.1 Security Considerations . 25

2

Chapter 1

Preface

This document describes Ecasound from the user’s point of view. In addition
to the actual user/client-programs, all essential Ecasound library concepts and
features are also discussed. To avoid duplicating documentation, I’ve used ref-
erences to other sources whenever suitable. For instance, Ecasound’s man pages
are a very good (and up-to-date!) source of information. They are also available
in HTML-format.

If not otherwise specified, all documentation refers to the latest Ecasound
version.

3

Chapter 2

Document history

• 31.01.2009 - Lots of minor improvements in preparation for 2.6.0 release.

• 29.01.2009 - Updated “JACK Audio Server” section to match the changes
in 2.6.0 release.

• 05.08.2008 - Fixed a bug in example of loop device usage.

• 09.03.2008 - Updated the EWF file section. Replace uses of “/dev/dsp”
with “alsa” in many examples.

• 06.12.2006 - Added notes concerning quoting EOS arguments containing
commas.

• 04.06.2006 - Some minor improvements to the text. Updated the descrip-
tions of realtime-lsm and rlimits-rtprio mechanisms.

• 25.04.2005 - From now on, only major changes are logged to this changelog
section. For detailed change history, refer to CVS history.

• 23.04.2005 - Started using the “hevea” style-package and converted all
links to use the hevea macros (resulting in real hyperlinks in the HTML
output). Renamed the section“Security considerations when running with
root privileges” to shorter “Security Considerations”, added info about
Realtime LSM module.

• 01.04.2005 - Updated “Ecasignalview” documentation.

• 30.03.2005 - Added sections on “Preset parameters” and “Parameter de-
scriptors”.

• 11.12.2004 - Added section “Filenames with commas not handled cor-
rectly”

• 18.12.2003 - Many typo fixes and other corrections from Eric Rzewnicki.

4

• 18.11.2003 - Typo fixes.

• 20.08.2003 - Capitalize Ecasound in all cases where talking about the
software package, not the console mode user-interface. Updated JACK
documentation with a description of JACK and Ecasound states.

• 13.08.2003 - Updated documentation concerning JACK transport func-
tions.

• 31.10.2002 - Few section layout bugs fixed.

• 30.10.2002 - Added JACK documentation, minor layout changes.

• 17.10.2002 - Updated Ecasound overview.

• 17.07.2002 - Added documentation for ecasignalview.

• 18.05.2002 - Fixed a few typos.

• 21.10.2001 - Added material from the Ecasound FAQ.

• 21.10.2001 - Added this history section. Document was restructured and
all major chapters reviewed.

• 01.02.2001 - Updated the “Current position” section.

5

Chapter 3

Introduction

3.1 What is Ecasound?

Ecasound is a software package designed for multitrack audio processing. It can
be used for simple tasks like audio playback, recording and format conversions,
as well as for multitrack effect processing, mixing, recording and signal recycling.
Ecasound supports a wide range of audio inputs, outputs and effect algorithms.
Effects and audio objects can be combined in various ways, and their parameters
can be controlled by operator objects like oscillators and MIDI-CCs. A versatile
console mode user-interface is included in the package.

3.2 History

I’ve programmed Ecasound for my own recording purposes. The first versions
ran under IBM Os/2. I used them for finalizing my analog 4-track recordings.
My 4-track was a nice tool, but it had its limits. So eventually I started to use
Windows-based multitrack software. I still used Ecasound for fx processing and
finalizing. When I ported Ecasound to Linux, a lot of the code was rewritten
from scratch. During this I also added multitrack capabilities to Ecasound.
It took a lot of work, but in the end I was able to get rid of all my Windows
recording software. Nowadays I use Ecasound for all my music projects. Because
of this, I also continue to improve and develop Ecasound.

6

Chapter 4

Ecasound concepts

4.1 Audio object

Audio objects are used to transfer audio from and to Ecasound. Usually au-
dio objects are either files (like wav, mp3 or ogg) or devices (soundcard in-
put/output). There are also some special audio object types for transferring
data between applications.

4.2 Chain

Chain is the central signal flow abstraction. In many ways chains are similar
to audio cables. You have one input and one output to which you can connect
audio producers and consumers (like guitar and amplifier for instance).

But there are some differences. First it’s possible to attach chain operators
(usually effects) to chains. This is somewhat like replacing one cable with two,
and putting an effect box between them, but with chains it’s just easier. A
second important difference is that chains can transport multiple channels of
audio. It’s possible to attach mono, stereo or 24ch (or bigger) audio feeds to
one chain. Also all chain operators can handle these multichannel streams.

In addition to chain operators, chains also have separate“mute”and“bypass”
functions.

4.3 Chain operators and controllers

Chain operators are used to process and analyze sample data. They can be
divided into gates, converters, signal analyzers and to traditional effects like
reverbs, delays and filters.

It’s also possible to attach special controller objects to chains. These con-
trollers are used to control chain operator parameters. The typical examples

7

are various oscillators and MIDI continous controllers (knobs, sliders, etc found
on MIDI-devices).

Both types of objects are attached to chains. The term chain object refers
to all objects that can be attached to chains - ie. operators and controllers.

4.4 Chainsetup

Chainsetup is the central data object. All other objects (inputs, outputs, chains,
etc) are connected to some chainsetup. Many chainsetups can exist at the same
time (during one session), but only one of them can be in use. In Ecasound
documentation, the term connected is used to describe a chainsetup that is in
use.

Another important chainsetup concept is that of a selected chainsetup. All
editing operations are done on the currently selected chainsetup. It is possible
to have one chainsetup connected (currently processing audio), while editing
another, chainsetup that is selected for editing.

Loading and saving chainsetups is the primary mechanism for storing and
restoring state information. When saving to files, the .ecs file format is used.
The file syntax uses the same notation as Ecasound’s console (and command-
line) interface. This makes it easy to edit the chainsetup files outside Ecasound,
either manually or using external utils. See ecasound(1) man page for details.

4.5 Current position

Information about current position is only stored for audio objects and chain-
setups. When you change chainsetup position, all audio objects are affected.
On the other hand, positions of different audio objects can be changed indepen-
dently.

4.6 Ecasound Control Interface - ECI

Ecasound Control Interface is an API for application developers who want to
take advantage of libecasound in their own apps. See “Ecasound Control Inter-
face Guide” and “Ecasound Programmer’s Guide” for more information.

4.7 Ecasound Interactive Mode - EIAM

Most of Ecasound’s functionality is located in one central library (libecasound).
One thing that this library provides is a simple interpreter, which can be used
for controlling Ecasound. This mode of operation is better known as Ecasound’s
interactive mode.

8

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

The most common frontend for EIAM is the console-mode Ecasound pro-
gram. You can enter interactive mode by issuing “ecasound -c”. For more
detailed information about EIAM, see ecasound-iam(1) man page.

4.8 Ecasound Option Syntax - EOS

One very notable feature of the console-mode ecasound program is its command-
line option syntax. You can do pretty much everything from the command-line.

But it doesn’t end with the console-mode ecasound. In fact, interpreting
these options is located in the main libecasound library, and is very closely tied
to the interactive mode.

As a result, the same syntax (tokens that look like“-prefix:arg1,arg2,...,argN”),
is used in various parts of libecasound. Note that if any of the arguments con-
tain commas, those arguments need to be enclosed in double-quotes (for example
“-prefix:är,g1̈,arg2”).

Following is a partial list of the places where EOS syntax has been used:

• parsing command-line options

• the interactive-mode (as arguments to the ’cs-option’ command [2.1dev4
and newer])

• saved chainsetup-files (.ecs format)

• effect preset definitions (see for example“prefix/share/ecasound/effect presets”)

• generic oscillator definitions (see for example“prefix/share/ecasound/generic oscillators”

9

Chapter 5

Using

5.1 Where to start?

There’s no one single right way to use Ecasound. You can use it as a simple
glue component for doing tasks that aren’t handled by other applications you
are using, or because Ecasound does these tasks more easily (or better even :)).
But Ecasound can also serve as the centre of your studio setup, doing everything
from effects processing to multitrack recording and mixing.

This flexibility doesn’t come for free. It’s difficult to describe Ecasound’s fea-
tures in a few phrases. Because of this, new users are encouraged to start from
the Examples page at http://www.eca.cx/ecasound/Documentation/examples.html.
It isn’t a perfect introduction, and definitely shows only one way to use the soft-
ware, but it does give an overall view of what can be done, and more importantly,
it shows that many tasks are actually quite simple to do.

5.2 Rules for editing chainsetups

Here are a few rules that help writing valid chainsetups. Whether you are
editing chainsetup files (.ecs), some graphical frontend, just using command-
line options, etc; these rules always apply:

• Every chain has exactly one input and one output.

• All inputs and outputs must be connected to some chain.

• For every input/output, there is one and only one definition (example:
“-i:file.wav”).

• All routing from and to chains is based on selecting a set of chains and
then specifying an input or output (example: “-a:1,2 -i:file.ext”).

• All audio copying and mixing is done channel-wise. If you attach a 4-
channel input and a two-channel output to a chain, that chain will have

10

4 channels of audio, but only the first two channels will be written to the
output file.

Note that these rules are checked only when connecting the chainsetup (when
issuing commands such as “cs-connect”, or “start”).

5.3 Chain operators and controllers

The best place to start is to read through the ecasound(1) man page, which
contains documentation for all native Ecasound chain objects.

5.4 Configuration

User preferences are stored in ˜/.ecasound/ecasoundrc. See the ecasoundrc(5)

manual page for details.
By default, files for effect presets and oscillator presets are in prefix/share/ecasound.

5.5 Common problems

5.5.1 I get occasional audio dropouts during operation?
How to get rid of them?

Check http://www.oreillynet.com/pub/a/linux/2000/11/17/low_latency.html

where you’ll find a very good article written by Dave Phillips on Linux low-
latency issues. If you are in a hurry (or desperate :)), here’s a quick list of
things to try:

• Tune your disks (see the article)

• Enable ecasound’s double-buffering system by using the -z:db option [note!
this is only necessary with Ecasound 2.0.x and older]

• If you’re still having problems, run ecasound as root (or with SUID-bit
set) and use ecasound’s -r option. This will raise ecasound’s scheduling
priority to realtime (SCHED FIFO). [with ecasound 2.1 and newer, just
run ecasound as root and it will take care of tuning the settings]

• Try increasing ecasound’s buffersize with the -b:sample frames option.
Something like -b:4096 should do the trick.

• If all else fails, try the various low-latency kernel patches (again, check the
article)

There has been a lot of discussion about tuning your system for better per-
formance on linux-audio-dev and linux-audio-user mailing lists. You can browse
the list archives at http://www.linuxdj.com/audio/lad/archive.php.

Here are links to selected messages from the ecasound-list archives:

11

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

• Tuning parameters for reliable recording, http://eca.cx/ecasound-list/2005/04/0038.html

• Smart Buffering, http://eca.cx/ecasound-list/2001/10/0020.html

• Ecasound for Recording, http://eca.cx/ecasound-list/2001/06/0016.html

5.5.2 Can I use multiple soundcards?

This is possible, but there are some issues you should be aware of. If you try us-
ing multiple cheap soundcards to get more simultaneous inputs for recording, it’s
likely that the resulting streams will not be in sync. This problem is explained in
detail in the Linux Audio-Quality HOWTO, http://www.linuxdj.com/audio/quality/,
section ”Notes on Full Duplex Recording, and Other Realtime Issues”.

5.5.3 Problems with panning mono files

In situations where you need to convert mono audio objects to multichannel
objects, Ecasound can behave in a somewhat unexpected manner.

For instance, the correct way to set panning for three individual mono input
files, and mix the resulting stereo output to soundcard, is:

ecasound -a:1 -i:monofile1.wav -erc:1,2 -epp:0 \

-a:2 -i:monofile2.wav -erc:1,2 -epp:50 \

-a:3 -i:monofile3.wav -erc:1,2 -epp:100 \

-a:all -f:16,2,44100 -o:alsa

The actual signal chain is something like:

monofile1.wav |--’1’---- erc ----| epp |---\

\-----| |---\\

\\

monofile2.wav |--’2’---- erc ----| epp |------- | alsa

\-----| |------- |

//

monofile3.wav |--’3’---- erc ----| epp |---//

\-----| |---/

(’---’ = mono channel)

The critical points to notice are:

• ecasound automatically notices that the three input files are mono files so
chains are initialized with one mono input

• chains contain mono signal until -erc operator, which transforms the chain
into a stereo chain by copying the data from ch1 to ch2

• now -epp works as expected (sets the stereo balance for one input)

12

• chains are mixed to the soundcard device channel-wise

If you leave out the -erc operators, chains will still be converted to stereo (as
-epp is a stereo operator), but on each chain, only the first channel (left) will
contain any audio from the input files.

5.5.4 Filenames with commas not handled correctly

There are some pitfalls in how commas in filenames are handled by ecasound.
If you have a filename “foo,bar.ogg”, the following will not work:

ecasound -i foo,bar.ogg -o alsa

The only way around this is to escape all the commas with backslashes:

ecasound -i foo\\,bar.ogg -o alsa

The backslash has to be a double-backslash as the shell strips one of the
backslashes away before passing the string to ecasound.

13

Chapter 6

User interfaces and
Applications

For a complete list of user-interfaces and applications built on top of Ecasound,
visit Ecasound’s web site at http://www.eca.cx.

6.1 Ecasound

The standalone program “ecasound” is the primary user interface for Ecasound.
See ecasound(1) man page and the Examples web page at http://www.eca.cx/ecasound/Documentation/

6.2 Ecasignalview

Ecasignalview is an utility program for monitoring signal amplitude and peak
statistics. It’s primarily used when adjusting signal levels for recording.

6.2.1 Basic use

The basic use scenario is to record audio from a soundcard device, visualize it
with vu-meters and write it to a null output.

OSS-drivers (or properly installed ALSA OSS-emulation)

ecasignalview /dev/dsp null

native ALSA-mode, recording from the ’default’ device

ecasignalview alsa,default null

It is possible to reset the max-peak and clipped-samples counters by sending
a SIGHUP signal to the process (i.e. from another console: ”killall -v -HUP
ecasignalview”).

14

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

To monitor the input signal you can either use the soundcard’s analog (or in
some cases, digital) monitoring functions by enabling line/mic-in monitoring us-
ing alsamixer (ALSA), aumix (OSS) or some other mixer application. Another
option is to use ecasignalview to do the monitoring. In this case the correct
command is:

OSS input and output

ecasignalview /dev/dsp /dev/dsp

corresponding ALSA command

ecasignalview alsa,default alsa,default

Ecasignalview command-line options allow you to fine-tune the way moni-
toring is done:

increased refresh rate 20Hz

ecasignalview -r:50 alsa null

larger buffersize (1024 samples)

ecasignalview -b:1024 alsa null

recording in mode 32bit/10channels/96000Hz with

interleaved channels

ecasignalview -f:s32,10,96000,i alsa null

It can also be used with files and real-time devices like JACK inputs and
outputs:

monitor audio recorded by JACK system input (first 2ch)

ecasignalview -f:f32,2 jack,system null

monitor audio from JACK application ‘‘foosynth’’

ecasignalview -f:f32,2 jack,foosynth null

play and monitor a file input

ecasignalview foo.wav alsa

6.2.2 Further Reading

See ecatools(1) man page for a detailed listing of available command-line
options.

6.3 Ecatools

See ecatools(1) man page.

15

Chapter 7

Advanced features

7.1 Audio loop devices

Just by using normal chain connections it’s not possible to route audio from
one Ecasound chain to another. One way around this limitation is loop devices.
They were introduced in Ecasound 1.7.0.

7.1.1 Example of use

An example use-case where we route audio from chains “1” and “2” to chain “3”
which is amplified and send to a soundcard output (“alsa”).

--cut--

note, the second loop parameter is the loop id-number;

it is used to associate loop inputs with correct loop outputs

ecasound -a:1 -i:some.mp3

-a:2 -i:another.mp3

-a:1,2 -o:loop,1

-a:3 -ea:200 -i:loop,1 -o alsa

--cut--

Both inputs are eventually routed to chain ”3”, where a -ea:200 is applied
to the signal. This does have one downside, loop device adds latency (-b:x ->
latency of x frames).

16

7.2 Ecasound Wave Files - the EWF (.ewf) for-
mat

7.2.1 General

Ecasound Wave File (.ewf) is a simple wrapper format for controlling other audio
objects. Ewf files are useful for offsetting or time-shifting audio files (for instance
play a short audio clip in the middle of a long multitrack mix), for minimizing
diskspace usage during multitrack recording (output offsetting) and looping.

Starting from Ecasound version 2.5.0, similar functionality is provided by
special purpose audio object types ’audioloop’, ’audioselect’ and others. You
may choose between EWF and these audio object types based on your specific
needs. See ecasound(1) man page and the Examples web page at http://www.eca.cx/ecasound/Documentati
for many examples of using these.

Writing to EWF file is nowadays considered to be a deprecated feature and
it may be removed in a future release.

7.2.2 File format

Ewf-files are stored in ascii format. The syntax is based on “key=value” pairs.
The same syntax is used with Ecasound resource files. See ecasoundrc(5) man
page for detailed info. Currently recognized ewf keywords are:

• source - audio object name (string) [read,write]

• offset - insert audio object at offset (time) [read,write]

• start-position - start offset inside audio object (time) [read]

• length - how much of audio object data is used (time) [read]

• looping - whether to loop sample data (true or false) [read]

All time values are interpreted as seconds (need not be an integer but can
be given as a decimal number, e.g. “1.05”). However if the value is an integer
number and has a postfix of “sa” (e.g. “44100sa”), it is interpreted as time
expressed as samples (in case of a multichannel stream, time in sample frames).

7.2.3 Example of ewf use

Let’s look at a simple example .ewf file:

-- test.ewf --

source = test.wav

offset = 5.0

start-position = 2.0

length = 3.0

looping = true

--cut--

17

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

Now what happens when you issue ”ecasound -i test.ewf -o alsa”? Because of
the “offset” definition, the first 5 seconds will be silent. After that ecasound will
start to read data from “test.wav”. But as “start-position” is not zero, ecasound
will skip the first 2 seconds. After 8 seconds has passed (“offset” + “length”),
ecasound will loop back to “start-position”. This looping will continue until the
user interrupts the operation.

7.3 Effect presets

7.3.1 General

Ecasound has a powerful effect preset system that allows you to create new
effects by combining basic effects and controllers.

Presets can be stored into separate files or they can be stored into a global
database. Either way, the preset format is the same (also see ecasoundrc(5)

man page, the same file format and syntax is used):

preset_name = effects controllers | ... | effects controllers

Effects and controllers are specified using the EOS syntax, the same syntax
that is used for parsing command-line options (“-ea:100”, “-kl:1,0,100,5”, etc).
The pipe character is used to separate parallel chains.

Just like in shell scripts, the ’\’ character can be used to spread definitions
across multiple lines.

7.3.2 Example of preset use

Ecasound effect presets are in fact small Ecasound engines that behave just like
native effects. Here’s an example of a multi-chain effect preset:

--cut file ’bassbooster.ecp’--

let’s put the low freqs into one chain and high freqs in another

bassbooster = -efl:2000 -ea:200 | -efh:2000 -ea:50

note, the ’|’ sign separates parallel chains

--cut--

Once defined, you can use the preset in the following way:

--cut--

ecasound -a:1 -i:some.mp3 -pf:bassbooster.ecp

-a:2 -i:another.mp3 -pf:bassbooster.ecp

-a:1,2 -o:alsa

--cut--

18

When separate files are used (the “-pf:name”option), Ecasound always loads
the first preset it finds. If the file contains more presets (additional “key=value”
-pairs), they are ignored.

An alternative way to define presets is to put the definition in the global
preset list (usually in “/usr/local/share/ecasound/effect presets”. Once you’ve
added a line defining “bassbooster”, you can use it like:

--cut--

ecasound -a:1 -i:some.mp3 -pn:bassbooster

-a:2 -i:another.mp3 -pn:bassbooster

-a:1,2 -o:alsa

--cut--

7.3.3 Preset parameters

Parameters of operators belonging to a preset can be exposed as preset paramters.
Example:

--cut preset definition--

f_res_lowpass = -ef3:%1,1.5,0.7

--cut--

In the above example, the lowpass filter cutoff is exposed as a parameter of
the “f res lowpass” preset. The preset can be used just like any other Ecasound
operator. The following two commands will results in identical output:

--cut--

ecasound -i:foo.mp3 -o:alsa -pn:f_res_lowpass,800

ecasound -i:foo.mp3 -o:alsa -ef3:800,1.5,0.7

--cut--

7.3.4 Parameter descriptors

Ecasound preset parameters can be described using the following set of descrip-
tors:

-pd:name_of_preset = preset description

-ppn:par1,...,parN = parameter names (public params)

-ppd:val1,...,valN = default param values

-ppl:val1,...,valN = lower bounds for param values

-ppu:val1,...,valN = upper bounds for param values

-ppt:flags1,...,flagsN = special flags for param N

(’i’=integer, ’l’=logarithmic, ’o’=output, ’t’=toggle)

The option can only be used inside preset definitions (in“effect presets”files,
or individual “*.ecp” files). An example preset parameter definition:

19

--cut--

f_two_filters = -efl:800 -ea:%1 | -efh:800 -ea:%2 \

-pd:Parallel_highpass_and_lowpass_filters \

-ppl:0,0 -ppu:1000,- \

-ppd:100,100 -ppn:lowgain,highgain

--cut--

The above preset “f two filters” has two parameters, which are described
using the “-pd” descriptor. Recommended lower and upper bounds for the pa-
rameters are defined with “-ppl” and “-ppu” descriptors. Default values for the
parameters are specified with “-ppd”.

7.4 Gate operators

Gates are just like any other chain operators. They are assigned to a chain, and
process passing audio data buffers. One special feature of gates is the ability
to crop sections of audio files, for instance to achieve automatic volume-based
cutting of audio streams:

7.4.1 Example of use

The following sequence cuts the section [60:00 sec -> 61:00 sec] from“guitar.wav”
into “gate-test.wav”:

--cut--

|\$ ls -la guitar.wav

-rw-rw-r-- 1 kaiv kaiv 15790124 Sep 30 23:27 guitar.wav

|\$ ecasound -i guitar.wav -o gate-test.wav -gc:60,1

|\$ ls -la gate-test.wav

-rw-rw-r-- 1 kaiv kaiv 180268 Dec 12 22:13 gate-test.wav

--cut--

The threshold gate is used similarly:

--cut--

|\$ ecasound -i gate-test.wav -o gate-test-rms.wav -ge:11.2,5,1

|\$ ecasound -i gate-test.wav -o gate-test-peak.wav -ge:5,5,0

|\$ ls -la gate*wav

-rw-rw-r-- 1 kaiv kaiv 163884 Dec 12 22:18 gate-test-peak.wav

-rw-rw-r-- 1 kaiv kaiv 143404 Dec 12 22:17 gate-test-rms.wav

-rw-rw-r-- 1 kaiv kaiv 180268 Dec 12 22:13 gate-test.wav

--cut--

20

In the first case, the gate is opened when the RMS-volume goes over the
“11.2%” threshold, and closed when RMS-volume falls below “5%”. In the sec-
ond, case, both entry and close thresholds are “5%” (peak volume).

7.5 LADSPA plugins

Ecasound supports LADSPA-effect plugins (Linux Audio Developer’s Simple
Plugin API). See ecasound(1) man page and the LADSPA web site at“www.ladspa.org”
for more information.

7.5.1 Ecasound is not able to find any LADSPA plugins I
have installed!

Just installing the LADSPA SDK - “www.ladspa.org” - should be enough. The
plugins themselves are stored in shared library files (.so). They are usually
stored in “/usr/local/lib/ladspa”. To test whether Ecasound finds the plugins,
issue:

echo ”ladspa-register” | ecasound -c
You should get a list of all installed LADSPA plugins. If this doesn’t

work, you need to make sure Ecasound is compiled with LADSPA enabled (ie.
ladspa.h header was present when Ecasound was compiled). The precompiled
rpm-binaries have this, but if you’ve compiled Ecasound yourself you should
recompile after installing the LADSPA SDK.

Also, check Dave Phillips’ great article on Oreillynet - http://www.oreillynet.com/pub/a/linux/2001/02

7.6 JACK Audio Server

JACK is system for handling real-time, low latency audio. It allows multiple
independent applications to access the system audio hardware and also to route
audio between applications.

JACK is different from other audio server efforts in that it has been designed
from the ground up to be suitable for professional audio work. This means that
it focuses on two key areas: synchronous execution of all clients, and low latency
operation.

Note that Ecasound must be compiled with JACK support enabled (the “–
with-jack” configure option) to take advantage of the functionality described in
this section.

7.6.1 Basic Input and Output

Let’s start with how to play a file using Ecasound and JACK:

ecasound -i foo.wav -o jack,system

21

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

This will create a separate JACK output port for each channel of “foo.wav”,
and automatically connect these Ecasound ports to the JACK system PCM
output ports.

Note that ecasound does not allow to mix objects with different sampling
rates (without explicitly inserting“samplerate”conversion objects). That means
that if sampling rate of“foo.wav”does not match the current JACK system rate,
the above command wil fail.

The connections creadted are as follows:

ecasound:out_1 --> system:playback_1

ecasound:out_2 --> system:playback_2

If “foo.wav” was a four channel file, the same command would connect all
channels:

ecasound:out_1 --> system:playback_1

ecasound:out_2 --> system:playback_2

ecasound:out_3 --> system:playback_3

ecasound:out_4 --> system:playback_4

To record a file, you’d issue:

ecasound -f:,2 -i jack,system -o foo.wav

ecasound -f:f32,2,44100 -i jack,system -o foo.wav

Here we use “-f:bits,channels,srate” to set how many channels to record from
the sound device using JACK. As described in the ecasound(1) man page, the
parameters to “-f” may be overridden by the audio objects. In case of JACK,
the server always sets the sampling rate, and also the sample format is fixed to
32bit floats. Because of this, the above two examples achieve the same result
(but you may find the latter command more readable).

It is possible to add another “-f” before “-o foo.wav” if you want to write the
file in a different format. For example to convert the sample format to 16bit
fixed:

ecasound -f:f32,2 -i jack,system -f:s16,2 -o foo.wav

7.6.2 More Advanced Port Creation

Ecasound also offers the following alternative ways to create input and output
ports:

ecasound -i foo.wav -o jack

ecasound -i foo.wav -o jack,remote_client

ecasound -i foo.wav -o jack,remote_client,local_portprefix

ecasound -i foo.wav -o jack,,local_portprefix

ecasound -i foo.wav -o jack_multi,remote_client:port_1,system:port_2

ecasound -i jack -o foo.wav

ecasound -i jack,remote_client -o foo.wav

ecasound -i jack,local_portprefix -o foo.wav

22

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

See ecasound(1) manual page for descriptions of the“jack multi”audio object
and the variants of “jack” usage.

7.6.3 Transport Control

Transport controls are functions like “start”, “stop”, “seek”, etc, that are com-
monly available in audio applications that maintain some kind of current posi-
tion. JACK’s transport control interface allows controlling the transport state of
all the apps connected to one JACK server from a single application. Ecasound
can support this functionality in four different modes (“notransport”, “send”,
“recv” and “sendrecv”).

By default Ecasound will both send and reveive transport events (position
and state) to other JACK clients (mode “sendrecv”):

ecasound -c -i null -o jack

To use transport control in Ecasound, you have to have at least one published
input or output JACK port. Here we publish one null output port. After giving
the initial “engine-launch” command in Ecasound interactive mode, you are now
able to use further EIAM commands to control all other JACK apps connected
to the same server. Commands like “stop”, “setpos 20”, “rw 10”, “fw 10”, and so
should affect other apps.

By default, Ecasound doesn’t react to outside transport control. To enable
this:

ecasound -c -i foo.wav -o jack,system -G:jack,eca_slave,recv

After giving an initial “engine-launch” to Ecasound, you should now be able
to use other JACK apps to control Ecasound’s playback of “foo.wav”.

To combine external control with the ability to control the transport from
ecasound’s user-interface:

ecasound -c -i foo.wav -o jack,system -G:jack,eca_slave,sendrecv

7.6.4 JACK and Ecasound states

To have a good understanding of the overall system, it’s important to understand
how Ecasound and JACK states relate to each other.

When an Ecasound chainsetup is connected (EIAM-command“cs-connect”),
a connection is established with the JACK server, and all the JACK ports in
that chainsetup are registered to it. Once Ecasound’s engine is launched with
EIAM-command “engine-launch”, connections (if any are specified) are made to
the ports of other JACK clients. In this state Ecasound is ready to process
incoming transport state and position changes.

When Ecasound processing is started (either with “start” or by an incoming
transport event), Ecasound’s engine runs as a node in the JACK system. When

23

http://eca.cx/ecasound/Documentation/ecasound_manpage.html

processing is stopped (either with “stop”, or by a transport event), Ecasound’s
engine is not run.

Any connections (initiated by Ecasound) to other clients, are disconnected
once “engine-halt” is issued and engine operation is stopped. Connection to
the remote JACK server as well as unregistering any ports is performed when
chainsetup is disconnected (“cs-disconnect”).

Note! Normally you don’t need to go through all the steps one by one.
Instead issuing “start” will automatically connect the chainsetup and launch
the engine. Similarly “cs-disconnect” will stop processing and halt the engine if
needed.

7.6.5 Troubleshooting

Ecasound v2.2 and earlier don’t have the capability to change the engine buffer-
size and sampling rate dynamically during processing. As a consequence, run-
ning Ecasound will fail if the currrent values for these parameters do not match
the ones used by the JACK server. In other words, you have to correctly set the
buffersize (with “-b:xxx”) and sampling rate (with “-f:bits,channels,srate” and
possibly using the resample audio object). This is the first thing to check if
communication with JACK does not work.

Future versions of Ecasound will hopefully solve this problem. This issue is
covered by Ecasound development item “edi-31 - Support for dynamic sampling
rate and buffersize changes.”.

7.6.6 Deprecated JACK input/output syntax

Ecasound 2.5 and older supported “jack alsa”, “jack auto” and “jack generic”
object types, but these are now replaced by a more generic “jack” interface. The
old variants this work, but are now considered deprecated (they work but may
be removed in a future Ecasound release).

24

Chapter 8

Miscellaneous

8.1 Security Considerations

When given the -r option (raise priority), Ecasound tries to raise its scheduling
priority (to so called SCHED FIFO realtime scheduling) and to avoid swapping,
locks all its memory. To do this, root-privileges are required. So either Ecasound
has to be run as root (logged in as root, or using the ’sudo’ program), it has
to be installed with the suid-root bit set, or otherwise be granted necessary
privileges to turn on real-time schedule (see below). Now is this a safe thing to
do?

Although there are no known vulnerabilities, setting Ecasound suid-root
is not safe. Whether this is a real problem depends on the particular setup
(whether connected to a network or not, any untrusted users with shell access,
...).

The basic problem is that Ecasound (or at least 2.0 and earlier) doesn’t
contain any code for altering privilege levels. If it is run with root-privileges, it
does everything as root - including forking external programs such as mp3 and
ogg utilities and editors.

But all in all, this shouldn’t be that big of an issue for many users. For
noncritical uses, just don’t set the suid-bit, but run as a normal user. If you
have an untrusted setup, and you don’t want to login as root, but still need to
run in raised-priority mode, the following can help to limit the risk of suid-root
use:

cd /usr/local/bin

chown root.ecausers ecasound

chmod 4750 ecasound

In other words, the ecasound binary is set as suid-root (so it is run with
root-privileges), but only root and members of the ’ecausers’ group can start it.
You of course first have to create the ’ecausers’ group to your system.

25

The ideal solution would be that ecasound would not need full root-privileges,
but privileges for changing scheduling and locking memory. On recent Linux
systems, there are couple ways to achieve this.

The Realtime Linux Security Module (LSM) is one practical solution (see
http://sourceforge.net/projects/realtime-lsm/ and http://lwn.net/Articles/106009/).
This module is a loadable extension for Linux 2.6 kernels. It selectively grants
realtime permissions to specific user groups or applications. Unfortunately Re-
altime LSM does not yet come with the standard Linux kernel, so you need to
install it separately.

A more recent approach, and one that might be adopted by popular GNU/Linux
distributions, is the rtprio extension to Linux resource limits. See http://lwn.net/Articles/134460/
for a good overview of this approach and how it compared to the LSM mecha-
nism described above.

26

	Preface
	Document history
	Introduction
	What is Ecasound?
	History

	Ecasound concepts
	Audio object
	Chain
	Chain operators and controllers
	Chainsetup
	Current position
	Ecasound Control Interface - ECI
	Ecasound Interactive Mode - EIAM
	Ecasound Option Syntax - EOS

	Using
	Where to start?
	Rules for editing chainsetups
	Chain operators and controllers
	Configuration
	Common problems
	I get occasional audio dropouts during operation? How to get rid of them?
	Can I use multiple soundcards?
	Problems with panning mono files
	Filenames with commas not handled correctly

	User interfaces and Applications
	Ecasound
	Ecasignalview
	Basic use
	Further Reading

	Ecatools

	Advanced features
	Audio loop devices
	Example of use

	Ecasound Wave Files - the EWF (.ewf) format
	General
	File format
	Example of ewf use

	Effect presets
	General
	Example of preset use
	Preset parameters
	Parameter descriptors

	Gate operators
	Example of use

	LADSPA plugins
	Ecasound is not able to find any LADSPA plugins I have installed!

	JACK Audio Server
	Basic Input and Output
	More Advanced Port Creation
	Transport Control
	JACK and Ecasound states
	Troubleshooting
	Deprecated JACK input/output syntax

	Miscellaneous
	Security Considerations

